更改,标志着易于获得的,负担得起的能源的稀缺性。乌克兰的战争敏锐地强调了这种短缺的后果。“廉价能源”的这种结构性下降将对全球经济产生不可损害的影响,从而影响医疗保健系统。例如,自2005年以来,持续原油(廉价能源)生产的下降[4]一直是2007年美国“次级危机”的主要驱动力以及2008年随之而来的全球金融危机[5]。这场危机的影响继续影响全球经济,导致政府减少公共支出以缩减预算赤字,包括通过削减卫生和社会护理的资金来削减预算缺陷[6]。在欧洲国家(非常依赖石油进口)中,这些限制是由自2000年代后期以来在英国[7]和法国[8]所观察到的,例如医院病床的不间断减少。
止血-van creveldkliniek,乌得勒支。2。Sanquin Research,阿姆斯特丹造血部。 引言钻石 - 黑色贫血综合征(DBAS)是一种罕见的遗传性骨髓衰竭综合征,其特征是低肿瘤性贫血,先天性畸形和对癌症的倾向。 大多数DBA患者在20个核糖体蛋白基因之一中出现突变,并且在分子和临床上都是非常异质的疾病。 DBA中贫血的治疗选择受到限制,包括糖皮质激素(GCS),红细胞(RBC) - 转移 - 经常性和同种异体干细胞移植,用于少量年轻患者。 除了对新型治疗选择的明显需求外,驱动DBA的疾病机制尚未完全阐明,并且由于患者样本的稀缺性和适当的疾病模型的稀缺性而阻碍了研究。 我们研究的目的是开发代表不同基因型和临床严重程度的基于IPSC的DBA模型。 这些模型可以用作研究疾病生物学,对GC的反应和其他贫血候选药物的工具箱。 我们已经从具有差异分子缺陷和临床严重程度的DBA患者中产生了IPSC线。 IPSC线用于产生造血器官(HEO),从中获得RBC前体。 在功能上表征了DBA IPSC-雌雄同体和对GCS的体外反应,收集了IPSC衍生的红细胞,并在培养期间或急性刺激期间遵循了对GC模拟dexametheroson的反应。Sanquin Research,阿姆斯特丹造血部。引言钻石 - 黑色贫血综合征(DBAS)是一种罕见的遗传性骨髓衰竭综合征,其特征是低肿瘤性贫血,先天性畸形和对癌症的倾向。大多数DBA患者在20个核糖体蛋白基因之一中出现突变,并且在分子和临床上都是非常异质的疾病。DBA中贫血的治疗选择受到限制,包括糖皮质激素(GCS),红细胞(RBC) - 转移 - 经常性和同种异体干细胞移植,用于少量年轻患者。除了对新型治疗选择的明显需求外,驱动DBA的疾病机制尚未完全阐明,并且由于患者样本的稀缺性和适当的疾病模型的稀缺性而阻碍了研究。我们研究的目的是开发代表不同基因型和临床严重程度的基于IPSC的DBA模型。这些模型可以用作研究疾病生物学,对GC的反应和其他贫血候选药物的工具箱。我们已经从具有差异分子缺陷和临床严重程度的DBA患者中产生了IPSC线。IPSC线用于产生造血器官(HEO),从中获得RBC前体。在功能上表征了DBA IPSC-雌雄同体和对GCS的体外反应,收集了IPSC衍生的红细胞,并在培养期间或急性刺激期间遵循了对GC模拟dexametheroson的反应。分析包括FACS分析,用于GC目标基因的QPCR,总RNA测序,形态分析和增殖动力学。MACS分级的IPSC衍生的红细胞允许阶段特定分析,当被认为适当时。结果我们已经生成了具有不同分子背景的DBA患者衍生的IPSC线(2X RPS19,1X RPS26和1X未知突变)。使用这些线路,我们成功地从HEO中成功产生了代表DBA中红细胞缺陷的RBC - 前体,并与各自DBAS患者的临床表型及其对体内GC治疗的反应相匹配。我们还将吉尔兹识别为GC响应基因,并将其用于确定培养基细胞中的GC受体信号传导动力学。与增殖动力学和RNA测序实验一起,我们使用它来评估HEO衍生的培养基细胞中对GC的反应。目前,我们正在研究基因型表型相关性和IPSC模型中GC响应的分子机制。结论DBAS患者衍生的IPSC线可以用作新型疾病模型,以研究仍知之甚少的DBA中的疾病表型。此外,IPSC衍生的红细胞可用于研究“新旧”的治疗干预措施,包括广泛使用的糖皮质激素。我们的DBAS- IPSC系列代表了一个强大的工具箱,用于未来的DBA研究,该工具可以克服了对其他患者材料或动物模型的需求。
CE912价值工程5在第二次世界大战期间进化的价值工程(VE)的概念当材料和人工短缺需要改变方法,材料和传统设计时。专业人士通常需要提高生产力和生产力,并达到比以往任何时候都更高的绩效水平。这些有时甚至来自现有技术,旧的设备和设施,尽管资本缺乏,缺乏劳动力的必要技能,社会经济和强制性压力,基础设施差等等。资源的稀缺性以及高消费率不仅使所有可用资源的保护势在必行,而且更重要的是,预防不必要的资源使用。这是VE可以确保结果的地方。竞争力取决于提高产品设计和质量的能力。这也取决于行业对市场变化的反应速度,并利用高科技产品的寿命通常很短。实现这些目标将需要必要的技能和工具才能成本效益完成工作。这是有助于完成的。
摘要 — 在电力系统中,可变可再生能源 (VRES) 和 ESS 必须有助于确保供应,因此储能系统 (ESS) 的运行可视为对稀缺性的套利。即时使用储能的价值必须与其潜在的未来价值和未来的稀缺风险相平衡。本文提出了一种多阶段随机规划模型,用于运行带有 VRES、ESS 和火力发电机的微电网,该模型分为短期和长期模型。短期模型利用每六小时更新一次的预测信息,而长期模型则考虑预测期以外的储能价值。该模型使用随机对偶动态规划和马尔可夫链求解,结果表明,对于可变可再生能源发电和 ESS 程度高且可调度发电容量有限的系统,考虑短期和长期不确定性的重要性增加。
可再生能源生产对矿物的消耗远高于化石资源。某些矿物的稀缺性限制了可再生能源替代稀缺化石资源的潜力。然而,矿物可以回收利用,而化石资源则不能。我们开发了一个跨期模型来研究在矿物密集型可再生能源和化石能源存在的情况下最佳能源结构的动态。我们分析了当矿物和化石资源都稀缺但矿物可回收利用时的能源生产。我们表明,矿物的回收率越高,能源结构就越应该依赖可再生能源,对可再生能源的投资也应该越早进行。即使存在其他影响资源使用最佳计划的更为人所知的因素,我们也能证实这些结果:可再生能源部门的预期生产率增长、两种能源之间的不完全替代、矿物资源的凸开采成本以及使用化石资源造成的污染。
绕过自然资源和气候逆境的稀缺性,旨在引入适当的农业实践以增加,保护,恢复和支持服务,这是近年来农业部门的最大挑战。有必要引入技术和技术,例如使用生物企业,这是迈向更具可持续性和韧性的农业实践的重要一步,通过提高效率和降低影响,以确保安全和环保意识的食物,从而长期贡献了长期。在这种情况下,这项工作具有客观的背景,将书目审查指出了在农业中生物企业的亮点。在数据库中进行探索,在过去的10年中工作了。显示了促进这些微生物的进步,这些微生物从养分的增加到生长激素的产生,从而促进了农作物的许多好处。具有确保平衡和综合农业生产系统的强大潜力。
药理学方面的当前可用治疗方法包括抗血栓形成剂,抗血小板剂和降脂剂(10)。在大多数时间手术中都需要进行:冠状动脉成形术,并插入支架以使血液流动或植入机械心室辅助装置(11,12)。尽管如此,这些方法与高医疗费用和其他并发症(例如出血和感染)有关(11)。通过药理学和手术方法管理CVD的改善降低了CVD的死亡率,但它们仅作为症状治疗。然而,仍然不可避免地具有严重病毒性的CVD的进展(13)。cvds尤其是MI,由于心肌细胞的功能不可逆地丧失导致心力衰竭的功能(14),无法通过药理和手术方法保存。迄今为止,心脏移植仍然是心力衰竭的标准治疗方法,即CVD的末端。捐助者的稀缺性
我们生活在AI快速发展的领域的时代,在该时代,AI技术已变成了许多域中必不可少的工具,包括生物医学图像分析。数字细胞学是一个涉及生物医学图像数据的领域,可以从AI技术中受益。AI技术通过减轻专业人士的负担和发现可能不会被人类注意到的专业人士的负担,为检测癌症等疾病的医学专家提供了巨大的潜力。但是,AI算法具有道德上的考虑因素和潜在的危害,需要关注和管理。认识到此问题在处理患者数据的应用中尤为重要,因为错误可能是由于错误引起的。另一个现有的问题是,患者数据通常会带来独特的挑战,这些挑战为用于处理此类信息的AI算法的发展增加了复杂性。本论文包含四篇论文,其中包括具有具有挑战性特性的数据的图像分类的方法,例如细颗粒标签的稀缺性和复杂的数据组成。重要的是,我们探索了能够解决AI缺乏解释性和信任的AI方法。本文中的四篇论文中的两篇是致力于对数据集的可解释的多个实例学习方法的可行端到端培训,每个患者的数据大量数据,例如细胞学数据。本文的其他论文之一中介绍的研究工作侧重于应用可解释的AI方法来分析现实世界中的细胞学数据以进行癌症检测。以数字细胞学公共可用数据集的短缺以及在现实世界中数字图像细胞学数据中缺乏细粒度标签的稀缺性,我们研究了合成数据在AI方法分析中的作用。在第四篇论文中,我们探讨了AI方法的功能,以与研究条件相关的信息的稀疏分析数据。这个研究问题对于回答基于细胞学的早期癌症检测很重要。我们的发现表明,尽管图像细胞学数据分析带来了挑战,但AI方法可以通过提供可能对他们有价值的信息来帮助医疗专家发挥重要作用。