空调(10小时)审查空调过程,夏季和冬季负载计算,内部和外部热量,冷却线圈,旁路因子,有效的明智的热量因子,用于冷却线圈的设计考虑,高潜热负载,蒸发冷却系统的设计,蒸发系统的设计,除湿度系统,脱水剂和空气垫圈,舒适的空气状态,舒适的空中,舒适的空中,有效,有效,有效,有效,有效,有效,有效,有效,有效,有效,有效,有效,有效,有效,有效,有效,有效。空气处理单元(08小时)空气处理单元,房间空气分布,流体流量和压力损失,管道设计,空气过滤器,加湿器,风扇,吹风机
aabstr abtract Act ..在这项研究中,开发了一种数据驱动的深度学习模型,以快速准确预测温度演化和金属添加剂制造过程的熔融池尺寸。该研究的重点是通过直接能量沉积制造的M4高速钢材料粉末的批量实验。在非优化过程参数下,许多沉积层(以上30)通过由覆层材料对热史的高灵敏度引起的样品深度产生了巨大的微观结构变化。在先前的研究中通过实验测量验证的批量样本的2D有限元分析(FEA)能够实现定义在不同过程设置下温度场进化的数值数据。训练了馈送前向神经网络(FFNN)方法,以重现由FEA产生的温度场。因此,训练有素的FFNN用于预测初始数据集中未包含的新过程参数集的温度字段历史记录。除了输入能量,节点坐标和时间外,还认为五个相关的层数,激光位置以及从激光到采样点的距离可提高预测准确性。结果表明,FFNN可以很好地预测温度演化,在12秒内精度为99%。
摘要 - 机器学习在决策过程中的广泛采用引起了人们对公平性的担忧,尤其是对敏感特征和对少数群体的潜在歧视的治疗。软件工程社区的反应是开发面向公平的指标,经验研究和方法。但是,在整个机器学习生命周期中,理解和分类工程公平的做法仍然存在差距。本文介绍了一种新颖的实践目录,以解决从系统的映射研究中得出的机器学习中的公平性。该研究确定并分类了现有文献中的28种实践,将它们映射到机器学习生命周期的不同阶段。从该目录中,作者提取了可操作的项目及其对软件工程研究人员和从业者的影响。这项工作旨在提供全面的资源,以将公平考虑因素整合到机器学习系统的开发和部署,增强其可靠性,问责制和信誉。
由 Emerald 出版。这是已获作者认可的手稿,其发行方式为:知识共享署名非商业许可证 (CC:BY:NC 4.0)。最终出版版本(记录版本)可在线获取,网址为 DOI:10.1108/AEAT-09-2021-0287。请参阅任何适用的出版商使用条款。
协调员MFCEM 2023年以高音,在Mehta医学工程中心就职典礼。旅程,从该想法的成立到其作为旨在促进工程解决方案解决医学问题的跨学科中心的认识,一直是视觉建设,团队合作,外展和协作的课程。MFCEM的慷慨支持。我坚信,MFCEM将在IIT Kanpur的生物科学和多元化工程领域的现有优势和领导力中受益匪浅。目前,MFCEM拥有来自各种学科的31位教职员工,例如生物科学,化学,化学工程,计算机科学和工程学和认知科学。不同领域的接近性将鼓励对现有医疗问题的合作和创新解决方案。在MFCEM工作的学生将获得跨学科培训和基础研究和转化研究的机会。我还想强调,MFCEM将在Laurus Labs和IIT Kanpur之间的行业 - 学院合作伙伴关系下建立研究部。它标志着在教师研究中的行业优先投资的开始,通过对基于腺相关病毒(AAV)的基于基因治疗载体的临床试验来促进发展和发展。
电气工程处理的是时间函数信号——各种形状的电振荡。使用简单信号作为示例更容易理解电子电路中发生的基本过程。傅里叶级数展开式包括这样的事实:任何复杂形状的振荡都被具有一定振幅和相位的正弦振荡的总和所取代。
富营养化被认为是对全球河口和沿海生态系统健康的最大威胁之一。这是一种全球现象,对食物网,水质和水生化学反应有显着影响。富营养化是向河口和沿海地区供应生态系统生态能力的结果(Nixon,2009; Rabalais等,2009)。营养负荷也可能导致养分比的变化,这可能会在海洋生态系统中产生“不良干扰”。在这一目标中,至关重要的是,沿海地区可以实现良好的环境地位(GES)。引起沿海富营养化的驾驶员设置在多个人类诱发的压力源和富营养化的影响的较大框架内(例如生物多样性,生态系统降解,有害藻类绽放和底部水中的氧气表现出现的损失似乎受到与其他压力的协同作用的加剧,包括过度的压力,沿海沿海发育过度,沿海发育和气候驱动的升高,海水表面温度,海洋酸性和沿海沿岸排放。实际上,气候变化会影响养分的投入和行为,并可能加剧富营养化及其相关的负面影响(Statham,2012; Malone and Newton,2020; Rozemeijer等,2021)。富营养化对水生环境的健康的重要性及其与多种压力的联系导致汇编了当前的研究主题:“在富营养化过程中,气候变化与人为压力之间的局限性,第二卷”。然而,气候变化与富营养化之间的联系很复杂,主要与温度,风向模式,水文周期和海平面上升有关,导致淡水系统的淹没,地层的变化,流动时间和流动性时间和植物生产力,生产力,沿海风暴的活动,沿海风暴活动,物种和ecosys的变化(2012年)。
a 瑞士苏黎世大学心理学系可塑性研究方法 b 瑞士苏黎世大学和苏黎世联邦理工学院苏黎世神经科学中心 (ZNZ) c 瑞士苏黎世大学大学研究优先计划“健康老龄化动力学” d 法国帕莱索巴黎萨克雷大学、Inria、CEA e 德国莱比锡马克斯普朗克人类认知和脑科学研究所神经病学系 f 加拿大魁北克省蒙特利尔蒙特利尔大学老年医学研究所功能神经影像科 g 美国德克萨斯州奥斯汀德克萨斯大学戴尔医学院计算神经影像实验室 h 美国密歇根州底特律韦恩州立大学老年学研究所和心理学系 i 加拿大蒙特利尔康考迪亚大学心理学系 j 大脑与运动研究所认知神经解剖学实验室épinière,法国巴黎 k 德克萨斯大学心理学系,美国德克萨斯州奥斯汀
征文:教育和教育研究中的人工智能国际研讨会 (AIEER) AIEER 2024 教育和教育研究中的人工智能国际研讨会是第 27 届欧洲人工智能会议 ECAI 2024 [https://www.ecai2024.eu/] 的一部分。本次研讨会定于 2024 年 10 月 19 日至 20 日星期六和星期日举行。 研讨会范围 本次研讨会有两个不同的重点,旨在更广泛地面向教育人工智能领域。 第 1 部分。由社会科学主导的讨论,讨论人工智能应用可能有助于解决的教育中的实际问题。这包括教育和教学人工智能的研究,也包括社会科学、经济学和人文学科,包括所有学科,如教育和教学实际行动、以教育需求为重点的劳动力市场研究、教育史和相关教育文化遗产,以及决策和行为科学观点的信息预测。一方面,我们关注人工智能、教育和社会之间的联系。这包括定量和定性研究、分析教育和劳动力市场数据的数据科学方法、推荐系统的人工智能方法以及数字化学习。另一方面,我们关注如何使用人工智能来突破该领域的界限。这包括开发新方法(包括使用人工智能的方法)、寻找和提供可访问的新数据源、丰富数据等等。在这两种情况下,不同观点之间的沟通和相互理解至关重要,这也是本次研讨会的目标之一。更广泛地说,我们感兴趣的是人工智能方法如何影响教育的所有领域以及企业和劳动力市场。这包括从小学到高等教育的所有教育部门如何受到人工智能方法的影响和对其作出反应的方法。用人工智能方法设计数字化未来为教育提出了几个问题:在最广泛的层面上,立法和规范问题;在公司层面,关于投资决策以及如何保持生产力和劳动力的问题;在个人层面,关于资格以及哪些技能需要应用和可能重新学习的问题。因此,技能和资格是教育和教育研究中人工智能的核心。第 2 部分。关于可以开发哪些人工智能应用程序(以及如何开发)来解决第 1 部分提出的问题的(计算机科学主导)讨论。使用基于人工智能的系统来支持教学或学习已经发展了 40 多年,但近年来,由于 COVID-19 大流行期间电子学习工具的使用增加以及最近生成人工智能的爆炸式增长,其增长显着增加。我们正处于这一领域发展的关键时刻,人工智能专家和教育专家必须携手合作,以在教学过程中最佳地利用这项技术。本次研讨会旨在为展示新提案和反思这一具有如此社会意义的领域的最新技术创造空间。在第一部分中,我们特别关注人工智能的技术方面,重点关注用于内容创建(生成式人工智能)、学生分析(机器学习)、学习分析或教师可解释的人工智能方法的具体技术
