摘要 - 机器学习在决策过程中的广泛采用引起了人们对公平性的担忧,尤其是对敏感特征和对少数群体的潜在歧视的治疗。软件工程社区的反应是开发面向公平的指标,经验研究和方法。但是,在整个机器学习生命周期中,理解和分类工程公平的做法仍然存在差距。本文介绍了一种新颖的实践目录,以解决从系统的映射研究中得出的机器学习中的公平性。该研究确定并分类了现有文献中的28种实践,将它们映射到机器学习生命周期的不同阶段。从该目录中,作者提取了可操作的项目及其对软件工程研究人员和从业者的影响。这项工作旨在提供全面的资源,以将公平考虑因素整合到机器学习系统的开发和部署,增强其可靠性,问责制和信誉。
摘要 免疫球蛋白 (Igs),也称为抗体,可协调宿主针对外来抗原(包括侵入性病原体)的获得性免疫反应。在鱼类中,IgM 主要存在于血液中,对体液系统免疫和保护宿主免受病原体侵害尤为重要。灭活疫苗是世界各地鱼类中广泛使用的一种主要疫苗,其效力与血清抗体水平直接相关;然而,鱼类血液中循环的全身性 IgM 出现的时间尚未确定。在本研究中,我们使用一种针对 IgM 开发的高灵敏度夹心酶联免疫吸附测定 (ELISA) 检查了日本琥珀鱼幼鱼血清 IgM 水平的动态变化。我们发现,幼鱼血清中的 IgM 浓度在孵化后 (dph) 长达 72 天 (平均值±平均值的标准误差 [SEM];体重:5.73±0.38 g,标准长度 [SL]:72.2±1.94 mm) 维持在较低水平,但从 79 dph 开始水平显著增加,在 85 dph (体重:14.05±0.92 g,SL:101.1±2.07 mm) 时达到平均值 84.76±9.23 μg/mL。这些结果表明,在幼鱼的早期生长阶段,由 IgM 介导的全身免疫仅部分成熟。目前的发现有助于制定针对幼鱼传染病的有效疫苗接种计划。
人工智能 (AI) 正在改变企业处理招聘和聘用流程的方式。随着组织越来越多地转向使用 AI 来简化招聘流程,围绕其使用的道德考虑变得越来越重要。虽然 AI 可以提供减少偏见和提高效率等好处,但它也引发了对隐私、公平和问责制的担忧。本研究论文的目的是探讨在招聘过程中使用 AI 的道德考虑,并确定确保合乎道德的 AI 招聘实践的最佳实践。AI 是指开发可以执行通常需要人类智能的任务(例如决策和解决问题)的计算机系统。在招聘方面,AI 算法可用于扫描简历、进行就业前评估和分析视频面试以识别潜在候选人。AI 有可能通过识别高质量候选人并减少招聘所需的时间和资源来改善招聘结果。然而,在招聘中使用人工智能也引发了与隐私、公平和问责相关的道德问题。
1.社交媒体策略 2.社交媒体内容营销 3.社交媒体的包容性和可访问性 4.建立社交媒体社区 5.衡量成功社交营销认证考试价值 199 美元
协调员MFCEM 2023年以高音,在Mehta医学工程中心就职典礼。旅程,从该想法的成立到其作为旨在促进工程解决方案解决医学问题的跨学科中心的认识,一直是视觉建设,团队合作,外展和协作的课程。MFCEM的慷慨支持。我坚信,MFCEM将在IIT Kanpur的生物科学和多元化工程领域的现有优势和领导力中受益匪浅。目前,MFCEM拥有来自各种学科的31位教职员工,例如生物科学,化学,化学工程,计算机科学和工程学和认知科学。不同领域的接近性将鼓励对现有医疗问题的合作和创新解决方案。在MFCEM工作的学生将获得跨学科培训和基础研究和转化研究的机会。我还想强调,MFCEM将在Laurus Labs和IIT Kanpur之间的行业 - 学院合作伙伴关系下建立研究部。它标志着在教师研究中的行业优先投资的开始,通过对基于腺相关病毒(AAV)的基于基因治疗载体的临床试验来促进发展和发展。
人工智能 (AI) 在医疗行业内患者护理和诊断流程的变革中发挥着越来越重要的作用。本文探讨了机器学习、自然语言处理和计算机视觉等 AI 技术对提高诊断准确性、简化患者护理和增强临床工作流程的变革性影响。通过分析最近的进展和案例研究,本文重点介绍了 AI 驱动的工具如何支持早期疾病检测、个性化治疗计划和患者数据的有效管理。它还探讨了与 AI 实施相关的潜在挑战和道德考虑,例如数据隐私和算法偏差。本文最后概述了 AI 在医疗保健领域的未来方向,强调需要继续研究、跨学科合作和监管框架,以最大限度地发挥 AI 的优势,同时解决潜在风险。通过这一探索,本文旨在全面了解 AI 在推进患者护理和诊断实践方面的作用,最终有助于建立更有效、更公平的医疗保健系统。
AAbstr bstract act.. 在过去十年中,机器学习越来越吸引多个科学领域的研究人员,特别是在增材制造领域。同时,这项技术对许多研究人员来说仍然是一种黑箱技术。事实上,它允许获得新的见解,以克服传统方法(例如有限元方法)的局限性,并考虑制造过程中发生的多物理复杂现象。这项工作提出了一项全面的研究,用于实施机器学习技术(人工神经网络),以预测 316L 不锈钢和碳化钨直接能量沉积过程中的热场演变。该框架由有限元热模型和神经网络组成。还研究了隐藏层数和每层节点数的影响。结果表明,基于 3 或 4 个隐藏层和整流线性单元作为激活函数的架构可以获得高保真度预测,准确率超过 99%。还强调了所选架构对模型准确性和 CPU 使用率的影响。所提出的框架可用于预测模拟多层沉积时的热场。
由 Emerald 出版。这是已获作者认可的手稿,其发行方式为:知识共享署名非商业许可证 (CC:BY:NC 4.0)。最终出版版本(记录版本)可在线获取,网址为 DOI:10.1108/AEAT-09-2021-0287。请参阅任何适用的出版商使用条款。
简介根据欧洲心脏病学会最新的慢性冠状动脉综合征指南,冠状动脉疾病 (CAD) 被定义为具有稳定性心绞痛症状和/或呼吸困难的 CAD 记录。1 众所周知,DNA 损伤是该疾病发病的原因之一。通常,这些损伤以单碱基突变、链断裂、碱基缺失或碱基修饰的形式出现。2 DNA 修复机制在维持基因组完整性方面起着非常重要的作用。不同的 DNA 修复机制用于修复哺乳动物细胞中不同的 DNA 损伤。BRCA1 是乳腺癌和卵巢癌的关键易感基因。3 它由几个对维持基因组稳定性至关重要的结构域组成,例如 DNA 修复、DNA 损伤信号传导、染色质重塑、细胞周期检查点的调节、蛋白质泛素化、转录调控和细胞凋亡。 BRCA1 蛋白通过调节同源重组 (HR),在 DNA 双链断裂修复过程中发挥着至关重要的作用。4