KS Sangwan 教授,皮拉尼校区 MS Dasgupta 教授,皮拉尼校区 Abhijeet K. Digalwar 教授,皮拉尼校区 Bijay K. Rout 教授,皮拉尼校区 Manoj Soni 教授,皮拉尼校区 Rajesh P Mishra 教授,皮拉尼校区 Dhananjay Madhukar Kulkarni 教授,果阿校区 教授Pravin Madanrao Singru,果阿校区 Shibu Clement 教授,果阿校区 R. Karthikeyan 教授,迪拜校区 Amit Kumar Gupta 教授,海得拉巴校区 Jeevan Jaidi 教授,海得拉巴校区 Morapakala Srinivas 教授,海得拉巴校区 N Suresh Kumar Reddy 教授,海得拉巴校区 Sandip S. Deshmukh 教授,海得拉巴校区 Srinivasa 教授Prakash Regalla,海得拉巴校区 YV Daseswara Rao 教授,海得拉巴校区 NVM Rao 教授,Pilani 校区 Shamsher Bahadur Singh 教授,Pilani 校区 Ajit Pratap Singh 教授,Pilani 校区 Annapoorna Gopal 教授,Pilani 校区 Arya Kumar 教授,Pilani 校区 PB 教授Venkataraman,皮拉尼校区 Srikanth Mutnuri 教授,果阿校区 D. Sriram 教授,海得拉巴校区 Sanket Goel 教授,海得拉巴校区 S Gurunarayanan 教授,海得拉巴校区 Venkata Vamsi Krishna Venuganti 教授,海得拉巴校区 Bhausaheb Botre 博士,CSIR - CEERI,皮拉尼 Udit Narayan Pal 博士,CSIR - CEERI,皮拉尼
富营养化被认为是对全球河口和沿海生态系统健康的最大威胁之一。这是一种全球现象,对食物网,水质和水生化学反应有显着影响。富营养化是向河口和沿海地区供应生态系统生态能力的结果(Nixon,2009; Rabalais等,2009)。营养负荷也可能导致养分比的变化,这可能会在海洋生态系统中产生“不良干扰”。在这一目标中,至关重要的是,沿海地区可以实现良好的环境地位(GES)。引起沿海富营养化的驾驶员设置在多个人类诱发的压力源和富营养化的影响的较大框架内(例如生物多样性,生态系统降解,有害藻类绽放和底部水中的氧气表现出现的损失似乎受到与其他压力的协同作用的加剧,包括过度的压力,沿海沿海发育过度,沿海发育和气候驱动的升高,海水表面温度,海洋酸性和沿海沿岸排放。实际上,气候变化会影响养分的投入和行为,并可能加剧富营养化及其相关的负面影响(Statham,2012; Malone and Newton,2020; Rozemeijer等,2021)。富营养化对水生环境的健康的重要性及其与多种压力的联系导致汇编了当前的研究主题:“在富营养化过程中,气候变化与人为压力之间的局限性,第二卷”。然而,气候变化与富营养化之间的联系很复杂,主要与温度,风向模式,水文周期和海平面上升有关,导致淡水系统的淹没,地层的变化,流动时间和流动性时间和植物生产力,生产力,沿海风暴的活动,沿海风暴活动,物种和ecosys的变化(2012年)。
1.社交媒体策略 2.社交媒体内容营销 3.社交媒体的包容性和可访问性 4.建立社交媒体社区 5.衡量成功社交营销认证考试价值 199 美元
AAbstr bstract act.. 在过去十年中,机器学习越来越吸引多个科学领域的研究人员,特别是在增材制造领域。同时,这项技术对许多研究人员来说仍然是一种黑箱技术。事实上,它允许获得新的见解,以克服传统方法(例如有限元方法)的局限性,并考虑制造过程中发生的多物理复杂现象。这项工作提出了一项全面的研究,用于实施机器学习技术(人工神经网络),以预测 316L 不锈钢和碳化钨直接能量沉积过程中的热场演变。该框架由有限元热模型和神经网络组成。还研究了隐藏层数和每层节点数的影响。结果表明,基于 3 或 4 个隐藏层和整流线性单元作为激活函数的架构可以获得高保真度预测,准确率超过 99%。还强调了所选架构对模型准确性和 CPU 使用率的影响。所提出的框架可用于预测模拟多层沉积时的热场。
摘要 - 机器学习在决策过程中的广泛采用引起了人们对公平性的担忧,尤其是对敏感特征和对少数群体的潜在歧视的治疗。软件工程社区的反应是开发面向公平的指标,经验研究和方法。但是,在整个机器学习生命周期中,理解和分类工程公平的做法仍然存在差距。本文介绍了一种新颖的实践目录,以解决从系统的映射研究中得出的机器学习中的公平性。该研究确定并分类了现有文献中的28种实践,将它们映射到机器学习生命周期的不同阶段。从该目录中,作者提取了可操作的项目及其对软件工程研究人员和从业者的影响。这项工作旨在提供全面的资源,以将公平考虑因素整合到机器学习系统的开发和部署,增强其可靠性,问责制和信誉。
摘要 免疫球蛋白 (Igs),也称为抗体,可协调宿主针对外来抗原(包括侵入性病原体)的获得性免疫反应。在鱼类中,IgM 主要存在于血液中,对体液系统免疫和保护宿主免受病原体侵害尤为重要。灭活疫苗是世界各地鱼类中广泛使用的一种主要疫苗,其效力与血清抗体水平直接相关;然而,鱼类血液中循环的全身性 IgM 出现的时间尚未确定。在本研究中,我们使用一种针对 IgM 开发的高灵敏度夹心酶联免疫吸附测定 (ELISA) 检查了日本琥珀鱼幼鱼血清 IgM 水平的动态变化。我们发现,幼鱼血清中的 IgM 浓度在孵化后 (dph) 长达 72 天 (平均值±平均值的标准误差 [SEM];体重:5.73±0.38 g,标准长度 [SL]:72.2±1.94 mm) 维持在较低水平,但从 79 dph 开始水平显著增加,在 85 dph (体重:14.05±0.92 g,SL:101.1±2.07 mm) 时达到平均值 84.76±9.23 μg/mL。这些结果表明,在幼鱼的早期生长阶段,由 IgM 介导的全身免疫仅部分成熟。目前的发现有助于制定针对幼鱼传染病的有效疫苗接种计划。
aabstr abtract Act ..在这项研究中,开发了一种数据驱动的深度学习模型,以快速准确预测温度演化和金属添加剂制造过程的熔融池尺寸。该研究的重点是通过直接能量沉积制造的M4高速钢材料粉末的批量实验。在非优化过程参数下,许多沉积层(以上30)通过由覆层材料对热史的高灵敏度引起的样品深度产生了巨大的微观结构变化。在先前的研究中通过实验测量验证的批量样本的2D有限元分析(FEA)能够实现定义在不同过程设置下温度场进化的数值数据。训练了馈送前向神经网络(FFNN)方法,以重现由FEA产生的温度场。因此,训练有素的FFNN用于预测初始数据集中未包含的新过程参数集的温度字段历史记录。除了输入能量,节点坐标和时间外,还认为五个相关的层数,激光位置以及从激光到采样点的距离可提高预测准确性。结果表明,FFNN可以很好地预测温度演化,在12秒内精度为99%。
摘要:胸膜间皮瘤 (PM) 是一种可观察到上皮样、双相性和肉瘤样组织类型的癌症。肉瘤样 PM 以间充质特征为特征。多组学已用于在分子水平上表征上皮-间充质 (EMT) 表型。我们通过纳入 RNA 编辑分析为此做出了贡献。我们从两个 PM 队列中提取了上皮评分最高与最低的样本,并观察到 EMT 后内含子中的 RNA 编辑增加而 3′UTR 中的 RNA 编辑减少。在通过转录组学分析分层为两组的原代 PM 原代培养物中也观察到了同样的情况,其中一组富集了间充质特征。我们的数据表明,与在其他癌症类型中观察到的情况一样,RNA 编辑与 PM 中的 EMT 表型相关。
由 Emerald 出版。这是已获作者认可的手稿,其发行方式为:知识共享署名非商业许可证 (CC:BY:NC 4.0)。最终出版版本(记录版本)可在线获取,网址为 DOI:10.1108/AEAT-09-2021-0287。请参阅任何适用的出版商使用条款。
简介根据欧洲心脏病学会最新的慢性冠状动脉综合征指南,冠状动脉疾病 (CAD) 被定义为具有稳定性心绞痛症状和/或呼吸困难的 CAD 记录。1 众所周知,DNA 损伤是该疾病发病的原因之一。通常,这些损伤以单碱基突变、链断裂、碱基缺失或碱基修饰的形式出现。2 DNA 修复机制在维持基因组完整性方面起着非常重要的作用。不同的 DNA 修复机制用于修复哺乳动物细胞中不同的 DNA 损伤。BRCA1 是乳腺癌和卵巢癌的关键易感基因。3 它由几个对维持基因组稳定性至关重要的结构域组成,例如 DNA 修复、DNA 损伤信号传导、染色质重塑、细胞周期检查点的调节、蛋白质泛素化、转录调控和细胞凋亡。 BRCA1 蛋白通过调节同源重组 (HR),在 DNA 双链断裂修复过程中发挥着至关重要的作用。4
