未精制(原)糖、经验证的可持续未精制(原)糖、糖蜜、用于生产乙醇的糖蜜、用于动物饲料的糖蜜、用于蒸馏的糖蜜、用于食品配料的糖蜜、结晶果糖粉、葡萄糖粉、一水葡萄糖、高果糖玉米糖浆、液体葡萄糖糖浆、麦芽糊精粉、麦芽糖浆、乙酰磺胺酸钾 (Ace-K)、阿斯巴甜、糖精钠、三氯蔗糖、木糖醇、天然玉米淀粉、改性玉米淀粉、玉米粉、天然木薯淀粉、木薯淀粉、小麦淀粉、苹果、葡萄、柠檬、芒果、橙子、梨、菠萝、番茄、芦荟、杏、香蕉、樱桃酸、番石榴、橘子、胡萝卜、椰子、百香果、桃子、椰果、草莓、碱化脂肪还原可可粉、去皮花生碎、碎花生、去壳芝麻、花生粉、花生酱/花生酱、花生、芝麻、花生碎、全澳洲坚果、无水乳脂、黄油、酪蛋白粉、全脂奶粉、全脂奶粉、脱脂奶粉、甜乳清粉、乳清蛋白浓缩物、全脂奶粉、AFP 卷、HDPE 树脂、LDPE 树脂、LLPDE 树脂、PP 树脂、PET 树脂、PS 树脂、不透明白色 r、rPET 薄片、rPET 树脂、rHDPE 树脂、rPP 树脂、玻璃瓶、纸、大卷、牛磺酸、酸度调节剂、无水柠檬酸、柠檬酸粉、一水柠檬酸、苹果酸、苹果酸粉、柠檬酸钠、柠檬酸钠粉末、抗坏血酸、抗坏血酸粉末、丙酸钙、丙酸钙粉末、谷氨酸钠、味精粉末、山梨酸钾、山梨酸钾粉末、苯甲酸钠、苯甲酸钠粉末、羧甲基纤维素 (CMC)、角叉菜胶、改性淀粉、天然玉米淀粉、果胶、木薯淀粉、黄原胶、青苹果香精、清凉薄荷、大米基葡萄糖糖浆、大麦、木薯片、可溶性干酒糟 (DDGS)、玉米、棉花、柑橘颗粒、鱼粉、大米、大豆、豆粕、大豆油、葵花籽油、硝酸铵、混合 NPK、NPK、尿素、甘蔗渣、甘蔗渣颗粒、椰子壳、椰子壳、混合热带草颗粒、秸秆颗粒、棕榈仁、稻壳、稻壳颗粒、木材颗粒、空果串、VIVE 验证的可持续生物质、传统能源、激励能源(可再生)、VIVE 或 I-REC 验证的可持续能源信用、含水乙醇、无水乙醇、燃料级乙醇、工业级乙醇、中性级乙醇、太阳能……
排放减少目标减少了19%的减少,在过去3年中的碳排放量表中(总体而言,雷迪博士的小组)反映了我们的承诺,这是我们采取的地面行动的几种结果。近期目标,我们预计碳排放量将在未来五年内减少,因此到2030年,我们的直接排放量是中性的(Scope1和Scope 2)。我们打算在2030年之前的间接排放量减少12.5%(范围3)。长期目标我们的长期野心是实现净零排放量,我们正在积极考虑将其视为我们的公众承诺,因为对其可行性和时间表评估进行了尽职调查。。碳减少量将我们的去碳化策略推向能源组合,保护,性能,过渡,最终在碳纤维上进行碳固换,并在造林和可持续农业方面进行有意义的投资。这包括通过节能技术和工艺减少我们的能源消耗,采用低或没有碳燃料,用替代生物质燃料来源的锅炉中代替化石燃料,例如稻壳和木屑粉刷,例如从可再生能源中购买能源,并降低我们的商业作业,并降低我们的商业作业
摘要:各种行业对纤维素的需求不断增长,因此需要寻找传统树纤维素树的可持续替代品。这项研究调查了农业废物的潜力,例如稻壳,玉米壳,玉米稻草和高粱稻草,以作为造纸工业的可行纤维素纸浆来源,目的是遏制纸质森林砍伐。使用牛皮纸方法从上述农业废物中回收纤维素的研究,并以纸浆产量表征每种农业废物。还通过确定其kappa数,排水指数,灰分含量和纤维长度来表征所得的纸浆。也表征了每种农业废物产生的纸张。结果表明;高粱稻草产生的纤维素产量最高(46.6%),因此与传统的木材源相媲美,该木材的产量在18%至55%之间。此外,发现高粱稻草的果肉质量与市场上主要的树木来源的果肉相媲美。这些农业废物产生的论文的理化特性表明它们适合低强度和通用纸张应用。该研究表明,上述农业废物具有良好的前景,可以减轻与纸张生产相关的森林砍伐以及从其中产生的环境影响,因为其中一些废物能够产生纤维素浆,能够产生与当前用作饲料库存的传统树的质量和数量相当的质量和数量,这些质量可作为饲料库存供应造纸工业。关键字:纤维素纸浆,农业废物,纸,森林砍伐
各种生物量废物的可用性以及针对森林砍伐的严格规则导致了颗粒板开发中废物生物量的利用增加。如果无法正确管理,这些生物量废物会变成环境污染物。因此,它们在开发刨花板中的利用有助于实现可持续的环境,这是联合国可持续发展目标之一。这项研究回顾了来自稻壳,木屑,玉米棒,甘蔗渣,燕麦酱,燕麦壳,椰子纤维,槟榔,黑麦稻草,番茄,番茄粉,榛子,榛子和Castor husk等生物质量废物的一些生产技术。对使用扫描电子显微镜的发达颗粒板的特性(物理,机械,化学和热的)和显微结构进行了严格审查。密度值用于将颗粒板分类为低密度,中密度和高密度颗粒板。使用吸水和厚度肿胀值确定颗粒板的耐用性,存放性和尺寸稳定性。弹性和破裂模量的模量有助于确定按照适当标准的颗粒板的质量和适用性。较低的热导率表示更好的绝缘性能。陈述了刨花板生产和利用的挑战和前景。废物生物量用于颗粒板生产是可持续的,以防止环境污染和森林砍伐。
本财年的强季风降雨给尼泊尔带来了死亡和破坏,但也带来了一些好消息。农业部周五宣布,尼泊尔农民预计本财年水稻收成将创历史新高。由于“高于正常水平的降雨”支持了水稻产量提高,尼泊尔的水稻移栽速度是几十年来最快的国家之一。马德西省长期以来一直存在降雨不足的问题,但该省获得两位数的收成,推动了全国水稻产量的提高。农业和畜牧业发展部的初步估计,本财年水稻产量同比可能增长约 4.04%,达到 595 万吨的新纪录。“这是有记录以来的最高水稻产量,”该部发言人马蒂娜·乔希·瓦伊迪亚说。水稻产量的增长可能会给开伯尔-普赫图赫瓦省夏尔马·奥利领导的政府带来一些喘息之机。该国经济正在努力应对产量低的问题,这导致进口增加。根据政府的最低支持价格,稻谷总价值(不包括稻草和稻壳等副产品)为 2132 亿卢比。尼泊尔大部分地区的稻谷在 6 月移栽,10 月至 11 月收获。
除批量模式之外的燃烧系统,反向下吸式炉(商业名称为 Oorja)运行。在过去四年中,在 JGI 火灾与燃烧研究中心,已经构思、实现和商业化了几种生物质清洁燃烧装置。这些装置构成了连续燃烧系统,主要依赖于喷射器诱导通风,需要更高的空气供应装置功率。在开发和商业化的品种中,有 (a) 具有倾斜炉排和空气供应装置的装置,适合自行进料不同密度的颗粒和类似燃料,(b) 包括用于稻壳等燃料的移动炉排的装置,(c) 水平配置的基于喷射器的空气供应和 (d) 垂直布置的喷射器配置,具有单盘或多盘装置。应用包括每小时一到几百公斤的功率水平,用户定义的可变热功率需求、短或长的燃烧区、有限的系统高度、广泛变化的密度、燃料形状和大小,例如木柴、废木、腰果壳废料、玉米芯和其他农业残留物,所有这些都采用清洁燃烧模式。虽然从燃烧科学的角度来看,期望满足这些对清洁燃烧气体燃料(如天然气或液化石油气)的需求已经足够具有挑战性,但真正最具挑战性的问题是设计一种家用烹饪解决方案(1 千克/小时水平),其生物质范围如上所述,因为
本研究研究了混凝土的辐射屏蔽特性,该特性融合了稻壳灰(RHA),牡蛎壳粉(OSP)和铁粉(FEP)。四个混凝土混合样品ି一种标准混凝土(C -M25)和三个具有40%RHA(C -RHA),OSP(C -SOSP)和FEP(C -FEP)的混凝土样品,作为良好的聚集物替换率ି,以后进行了ASTM C31。通过Epixs软件的插值来计算样品的光子衰减参数。总原子交叉 - 段(σT)值按以下顺序排名:C- FEP> c -osp> c -M25> c -c -rha。c -fep具有最大的MAC值,除了662ି1332KEV的能量范围,其中C -OSP表现出较高的值。C -fep的HVL在整个光子能量上是最高的,其值分别为3.07、4.05、5.34和5.70 cm,分别为356、662、1173和1332 KEV。c -fep在整个光子能量范围内达到了最大的z eff值,这归功于其高浓度的高z元素ିfe和ca。虽然混凝土样品的值接近,但C -fep以40 mfp获得了最低的EABF和EBF因子。c -fep是三个样品中最好的混凝土混合物,在考虑的所有辐射屏蔽参数方面达到了较高的值。与利用其他废物副产品的其他屏蔽材料相比,研究中的混凝土样品显示了材料的MAC和HVL的可比值。
摘要电子设备和工业技术的快速扩散已经扩大了电磁干扰(EMI)的挑战,这破坏了敏感设备的功能和可靠性。这项研究研究了源自本地采购的稻草的创新EMI屏蔽材料的开发,该材料是一种丰富的农业副产品。主要目标是提供传统屏蔽材料的可持续,具有成本效益和轻巧的替代品。稻草被加工并掺入带有导电填充剂的聚合物矩阵中,以形成稻壳(RH) - 聚合物(P)的比例为90:10,80,80:20,70:20,70:30:30,60:30,60:40和50:50。使用X射线衍射(XRD),扫描电子显微镜(SEM),傅立叶变换显微镜(FTIR)和矢量网络分析,使用诸如X射线衍射(XRD),扫描电子显微镜(SEM)等技术的结构,热,电气和EMI屏蔽性能进行了串联复合材料的表征。结果表明,根据填充剂的浓度,在8 GHz至12 GHz的频率范围内,基于稻草的复合材料在20 dB到40 dB的屏蔽效率(SE)值中获得了屏蔽效率(SE)值。由于复合材料的稳定性,发现50:50的比率具有最高的屏蔽效率。材料还表现出出色的电导率和轻巧的特性,使其非常适合电子,电信,汽车和航空航天工业的应用。这项研究强调了农业残留物应对关键工业挑战的潜力,为环保和可扩展的解决方案铺平了道路。关键字:电磁干扰,电子设备,屏蔽材料,稻草,导电聚合物
s1 -pp1:Marius Husanu; “ Al掺杂的SRTIO 3光催化剂,其性能提高”。s1 -pp2:mihaela botea; “批量分级(BA,SR)TIO 3结构具有增强的热稳定性”。s1 -pp3:liviu nedelcu; “ BA 1-X SR X TiO 3 /聚乙烯复合材料中的热漂移通过宽带介电光谱研究”。s1 -pp4:Oji Babatunde和Emmanuel Imoru; “使用稻壳灰的合成无形二氧化硅开发的基于mullite的陶瓷的形态和相检查”。s1 -pp5:Marius Cristian Cioangher; “用于成骨的应用的SR和GA掺杂的钛酸钡压电法”。s1 -pp6:mihaela bojan&cristian udrea; “用于土壤中重金属检测的Terahertz时域光谱”。S1 -PP7:Cristina Stefania Florica; “基于聚二苯胺和多壁碳纳米管的复合材料与羧酸基团在能量储存中的应用官能化”。 s1 -pp8:teodora burlanescu; “在过滤过程中使用的SERS支持和膜,含有用于应用的聚(乙烯基氯化物)的复合材料”。 S2 -pp1:Lucian Dragos Filip; “在多层异质结构中对绝缘体层在极化方向稳定性中的作用的研究”。 S2 -PP2:Liliana Marinela Balescu; “异质结构中铁电成分的Wurtzite III-V材料”。S1 -PP7:Cristina Stefania Florica; “基于聚二苯胺和多壁碳纳米管的复合材料与羧酸基团在能量储存中的应用官能化”。s1 -pp8:teodora burlanescu; “在过滤过程中使用的SERS支持和膜,含有用于应用的聚(乙烯基氯化物)的复合材料”。S2 -pp1:Lucian Dragos Filip; “在多层异质结构中对绝缘体层在极化方向稳定性中的作用的研究”。S2 -PP2:Liliana Marinela Balescu; “异质结构中铁电成分的Wurtzite III-V材料”。
颁发施工许可证 DOC 根据 FIT 生物质 29.00 PTCI 稻壳燃烧生物质热电联产设施 生物质 菲律宾贸易中心公司 苏丹库达拉特,马京达瑙省 3.00 2021 年 12 月 TBD 正在进行修复 10 兆瓦生物质热电联产厂 生物质 哥打巴托糖业中央有限公司 马塔拉姆,北哥打巴托 10.00 2021 年 12 月 2021 年 12 月 自用 10 兆瓦生物质热电联产厂 生物质 达沃糖业中央有限公司 哈戈诺伊,达沃德尔苏尔 10.00 2021 年 12 月 2021 年 12 月 自用 6 兆瓦生物质发电厂项目 生物质 Libertad 电力和能源公司 Aurora,三宝颜德尔苏尔 6.00 2023 年 6 月 2023 年 6 月 - 电池储能系统 (BESS) 280.00 Villanueva 电池储能系统 BESS Universal Power Solutions Inc. Tagoloan, Misamis Oriental 20.00 2021 年 11 月 2022 年 1 月 因新冠疫情导致延误 Tagoloan 电池储能系统第 2 阶段 BESS Universal Power Solutions Inc. Tagoloan, Misamis Oriental 20.00 2025 年 3 月 2025 年 5 月 因新冠疫情导致延误 Placer 电池储能系统 BESS Universal Power Solutions Inc. Placer, Surigao del Norte 20.00 2025 年 3 月 2025 年 5 月 因新冠疫情导致延误 Maramag 电池储能系统 BESS Universal Power Solutions Inc. Maramag, Bukidnon 20.00 2025 年 3 月 2025 年 5 月 因新冠疫情导致延误哥打巴托 20.00 2025 年 3 月 2025 年 5 月 因新冠肺炎疫情导致延误 马利塔电池储能系统 BESS Universal Power Solutions Inc. 马利塔,达沃 20.00 2021 年 4 月 2021 年 11 月 因新冠肺炎疫情导致延误 马科电池储能系统 BESS Universal Power Solutions Inc. 马科,达沃 20.00 2021 年 11 月 2022 年 1 月 因新冠肺炎疫情导致延误 贾萨安电池储能系统 BESS Universal Power Solutions Inc. 贾萨安,东米萨米斯省 20.00 2022 年 2 月 2022 年 5 月 因新冠肺炎疫情导致延误 塔古姆电池储能系统 BESS Universal Power Solutions Inc. 塔古姆,北达沃 20.00 2022 年 6 月 2022 年 8 月 因新冠肺炎疫情导致延误皮托戈,布吉. Sinunuc, 三宝颜市 60.00 2021 年 11 月 2022 年 1 月 因 COVID-19 大流行而延误 Sangali 电池储能系统 BESS Fort Pilar Energy, Inc. Sitio Malasugat, Brgy。三宝颜市桑加利 2022 年 2 月 20 日 2022 年 4 月 因 COVID-19 大流行而延误 Aurora 电池储能系统 BESS Fort Pilar Energy, Inc. Brgy。卡比利南 (Cabilinan)、奥罗拉 (Aurora)、南三宝颜 (Zamboanga del Sur) 20.00 Dec 2023 Dec 2023 因 COVID-19 大流行而延误