摘要 — 无人机与无人机之间的通信信号类似于交通信号灯,是城市和农村地区先进空中机动 (AAM) 成功的关键。部署空中出租车和空中救护车等 AAM 应用(尤其是大规模部署)需要可靠的信道,以便在两架或多架飞机之间进行点对点和广播通信。要在高度移动的环境中实现如此高的可靠性,需要为灵活性和效率而设计的通信系统。本文介绍了在独特的 AAM 环境中在多架飞机之间建立和维护可靠通信信道的基础。随后,它介绍了使用蜂窝网络作为地面网络基础设施的 AAM 服务的无线覆盖和移动性的概念和结果。最后,我们分析了在使用蜂窝网络时 3D AAM 走廊的无线定位性能,同时考虑了不同的走廊高度和基站密度。我们在整个手稿中重点介绍了未来的研究方向和未解决的问题,以改善无线覆盖和定位。
当然,任何考虑用算术方法产生随机数字的人都是犯了罪。因为,正如多次指出的那样,没有所谓的随机数——只有产生随机数的方法,而严格的算术程序当然不是这样的方法。
欢迎进入第20版调查员,我们在其中探索关键主题,塑造了航空安全和调查的未来。随着航空的进步,我们必须努力应对新兴挑战并利用新技术来提高行业安全。此版本的特点是思想上的文章,内容涉及从航空安全的心理方面到人工智能和无人系统在事故调查中的作用。我们探索了人工智能在调查中识别盲点的使用,这标志着调查实践的变革性转变。此外,我们研究了航空的未来,重点是自主系统和城市空气流动性时代的安全。我们还讨论了太空碎片所带来的挑战,以及无人机在革新空气事故调查中所扮演的角色。其中一篇文章解决了航空中的创伤,心理健康和道德伤害等关键问题,强调了对全面支持系统的需求。另一个致力于突出人为因素,例如视觉扫描期间的盲目性和偏见,因为它继续挑战运营安全性。该版本包含了有关阿联酋托管的航空安全和飞机事故研讨会,第六次MENA飞机事故事故调查区域合作机构会议的摘要以及第四次区域飞机事故和事件调查组织合作平台会议,旨在增强事故调查中的合作。在一起,我们正在朝着航空业的更安全,更先进和有希望的未来发展。我想借此机会真诚地感谢我们的贡献者,读者以及热情地从事航空安全工作的专业专业人员。
在编制这份报告时,我们考虑将太空经济划分为两个互补的部门:上游和下游。上游空间活动包括卫星和其他航天器及其有效载荷、系统、子系统和部件的设计、组装、集成和测试。这还包括从地球发射和操作它们所需的基础设施。换句话说,上游部分是制造或生产、控制和发射卫星、探测车、太空探测器和望远镜等物体以及其他航天器进入太空轨道的空间部门。下游空间使用这些航天器系统为地球上的科学、实验和商业用途提供产品和服务,例如用于电信、导航、地球观测、科学研究和其他应用。能力建设、传播和外联举措对于促进和提高我国的上游和下游空间能力至关重要。
摘要航空业在全球范围内迅速在技术上迅速发展,这是由于对航空旅行的需求不断增长。对于该趋势而言,该行业要维护高效和有效的运营至关重要。本报告旨在关注航空中最新的创新,专门针对人工智能和机器学习来提高安全性,效率和客户满意度的利用。这项研究的主要目的是对航空部门内的AI和ML应用提供广泛的概述。随着我们朝着由机器主导的未来,本论文将与AI一起结合机器学习的要素,以提供全面的观点。特别值得注意的是机器学习对飞机制造的影响,因为它涉及使机器能够学习和处理确保有效有效的工作过程所必需的数据。尽管人类创造了AI的发展,但人们仍然担心。这些对航空中相关性日益相关的恐惧也将通过本研究的分析来解决。
目前,Terma 正在为众多当前和未来的任务提供软件和硬件系统。 例如: • BepiColombo——2018 年发射至水星,采用我们的电力电子设备,使用我们的检验软件进行测试,并使用我们的卫星控制系统软件进行控制; • Euclid(预计 2020 年发射)——采用我们的电力电子设备,并使用我们的检验和模拟软件进行测试; • Aeolus——2018 年发射,搭载我们的星跟踪器; • Electra——正在使用我们的 RTU 进行开发; • Heinrich Hertz——正在使用我们的 RTU 进行开发; • SARah——正在开发中,采用我们的电力电子设备、RTU 硬件、测试和模拟软件,并使用我们的卫星控制软件进行操作; • OptSat——正在开发中,采用我们的电力电子设备、RTU 硬件、测试和模拟软件,并使用我们的卫星控制软件进行控制; • OneWeb——正在使用我们的检验软件进行测试。
“在看到 BBC 开展的类似项目后,我立即意识到,这样的项目将以一种方式激励、激发和激励我们合作学校的孩子们,让他们远远超越课堂的身心限制。我们邀请 Croft 博士与我们分享他的专业知识,在一次非常成功的试点之后,英国和美国的团队每次都继续开发该项目,并结合 Labdisc 传感器、跟踪器甚至 3D 打印任务补丁。”
摘要 - 新空间时代通过由公共空间代理商和私人公司领导的新空间任务增加了太空中的交流trafϔic。火星殖民化也是船员任务在不久的将来的目标。由于地球和火星附近的空间越来越多,带宽变得拥挤。此外,目前任务的下行链路性能在延迟和数据速率方面并不令人满意。因此,为了满足太空链接的不断增长的需求,在本研究中提出了Terahertz频段(0.1-10 THZ)无线通信。与此相一致,我们讨论了THZ带空间链接姿势和可能的解决方案的主要挑战。此外,我们为火星大气层的情况模拟了火星空间THZ链接,并进行了严重的沙尘暴,以表明即使在最坏的条件下,也可以使用大型带宽用于火星交流。
这是查尔斯大学 2023/24 年开设的“弯曲时空中的量子信息”课程的学习教材。该教材以爱德华多·马丁-马丁内斯在滑铁卢大学圆周研究所开设的类似课程为基础,并源自最近的多篇论文。基本上,我们将涉及相对论量子信息 (RQI) 研究的一些主题,这是一门在 2010 年左右出现的新学科,旨在合并三个领域:广义相对论 (GR)、量子场论 (QFT) 和量子信息 (QI)。主要思想是将相对论描述纳入 QI 处理,并从 QI 的角度研究时空结构和重力性质。例如,我们想解决以下问题: