Faraon 于 2004 年获得加州理工学院物理学学士学位。随后,他前往斯坦福大学攻读应用物理学博士学位和电气工程硕士学位,并于 2009 年获得这两个学位。他的博士研究重点是开发用于经典和量子信息处理的耦合量子点集成光子晶体器件。获得博士学位后,他成为加利福尼亚州帕洛阿尔托惠普 (HP) 实验室智能基础设施实验室的博士后研究员。在惠普,他开发了基于金刚石中氮空位的光子量子技术,并在硅中构建了光学互连器件。Faraon 因在半导体电子材料技术方面的进步而于 2008 年获得 Ross Tucker 奖。他发表了 25 多篇期刊文章,并合著了三本书的章节。
在拓扑结晶绝缘子锡尿酸罐中对费米水平的调整对于访问其独特的表面状态并优化其电子性能(例如Spintronics和Quantum Computing)至关重要。在这项研究中,我们证明了尿尿酸罐中的费米水平可以通过控制化学蒸气沉积合成过程中的锡浓度来有效调节。通过引入富含锡的条件,我们观察到X射线光电学光谱型锡和泰瑟列的核心水平峰值,表明费米水平的向上移动。通过紫外线光谱法测量的工作函数值的下降证实了这种转移,从而证实了SN空位的抑制。我们的发现提供了一种低成本,可扩展的方法,可以在锡尿酸罐中实现可调节的费米水平,从而在具有量身定制的电子特性的材料开发方面取得了重大进步,用于下一代技术应用。
了解催化剂活性位点是未来合理设计优化和定制催化剂的基本挑战。例如,Ce 4 + 表面位点部分还原为 Ce 3 + 以及氧空位的形成对于 CO 2 加氢、CO 氧化和水煤气变换反应至关重要。此外,金属纳米粒子、可还原载体和金属载体相互作用在反应条件下容易演变;因此必须在原位条件下表征催化剂结构以识别活性状态并推断结构-活性关系。在本研究中,分别通过原位定量多模电子断层扫描和原位加热电子能量损失谱研究了 Ni 纳米粒子修饰的介孔 CeO 2 中温度诱导的形态和化学变化。此外,使用带窗口的气室进行原位电子能量损失谱分析,揭示了 Ni 诱导的氢溢出对活性 Ce 3 + 位点形成和整体催化性能增强的作用。
摘要 通过恒电流间歇滴定技术在 3 至 4.2 V 电压范围内测定了 LiNi 1/3 Mn 1/3 Co 1/3 O 2 中的化学扩散系数。在充电和放电过程中,这些层状氧化物正极中的计算扩散系数分别在开路电压 3.8 V 和 3.7 V vs. Li/Li + 时达到最小。观察到的化学扩散系数的最小值表明在此电压范围内发生了相变。使用非原位晶体学分析确定了不同锂化状态下 LiNi 1/3 Mn 1/3 Co 1/3 O 2 正极的晶胞参数。结果表明,晶胞参数变化与 NMC 正极中化学扩散的观测值相关性很好;在同一电压范围内,绝对值有显著变化。我们将观察到的晶胞参数变化与镍转化为三价状态(具有 Jahn-Teller 活性)以及锂离子和空位的重新排列联系起来。
关键字:SR 2 Femoo 6,Sol-Gel方法,合成,光催化1。引言具有2 BB'O 6结构的双钙钛矿样化合物(a:稀土/碱土阳离子; B:过渡金属; B':过渡金属)最近成为讨论的重点,因为它们的独特结构和出色的特性。这类材料具有有希望的载体运输能力以及磁性,多效和光电特性,使其适合不同的应用[1-5]。特别是,已经报道了具有有希望的光催化特性的2 BB'O 6材料的数量越来越多。例如,2 NiWO 6(A:CA,SR)化合物显示出出色的有机分子降解的光催化活性[6]。A 2 BB'O 6化合物的催化性能提高了其原子结构。具体而言,已经发现,钙钛矿型氧化物的BO 6八面体结构促进了在光催化过程中电子过渡和氧空位的产生[7-10]。
摘要:几十年来,质子辐照实验一直被用作研究多种材料辐射效应的替代方法。质子加速器的丰富性和可及性使这种方法便于进行加速辐射老化研究。然而,开发具有更高辐射稳定性的新材料需要大量的模型材料、测试样品,并非常有效地利用加速器光束时间。因此,最佳束流或粒子通量的问题至关重要,需要充分了解。在这项工作中,我们使用 5 MeV 质子在砷化镓样品中引入位移损伤,并使用了广泛的通量值。正电子湮没寿命谱用于定量评估辐射诱导的存活空位的浓度。结果表明,质子通量在 10 11 和 10 12 cm − 2 .s − 1 之间会导致 GaAs 半导体材料中产生类似的单空位浓度,而通量进一步增加会导致该浓度急剧下降。
纳米级过渡金属三硫属化物如 TiS 3 在基础研究和应用开发方面都表现出巨大的潜力,但它们的自下而上的合成策略尚未实现。在这里,我们探索了 TiS 3 的化学气相沉积 (CVD) 合成,其晶格各向异性使得其能够沿 b 轴优先生长,从而得到长宽比可通过生长温度调节的矩形纳米片或纳米带。所获得的纳米结构在保持与原始半导体 TiS 3 一样的光谱和结构特征的同时,表现出高电导率和超低载流子活化势垒,有望作为纳米级导体。我们的实验和计算结果表明,CVD 生长的 TiS 3 中 S 2 − 2 空位的存在是造成重 n 型掺杂直至简并能级的原因。此外,预计通过用环境中的氧原子钝化 S 2 − 2 空位可以恢复半导体性能。因此,这项工作预示着利用缺陷工程三硫属化物半导体构建纳米级电子器件的诱人可能性。
摘要最近合成了二维(2D)Mbene板,称为硼片纸(MO 4 B 6 T Z),引起了人们对探索2D过渡金属硼烷的极大兴趣。Boridene具有有序的金属空缺排列,这对于其稳定性至关重要。采用第一原理计算,我们探索了具有不同空位浓度(V M)的硼硼稳定相,电子特性和催化能力。我们的结果表明,V m显着影响硼牛片的凝聚力。声子频谱和摘要分子动力学模拟揭示了无空位的硼苯基MO 6 B 6 T 6(T = O,-OH)的高稳定性,强调了它们的实验实现潜力。用NB,TA或W代替MO原子可以增强硼片的结构稳定性,从而鉴定出四种稳定变体:NB 6 B 6 F 6,TA 6 B 6 F 6 F 6,TA 6 B 6 O 6,W 6 B 6 B 6 B 6 O 6。这些硼片表现出金属行为,五个结构显示出接近零吉布斯的自由能,用于氢原子吸附,表明它们作为氢进化的催化剂
* 通讯作者:daw@clemson.edu 关键词:高熵合金 (HEA);成分复杂合金 (CCA);多组分合金;多主元素合金;等摩尔;FCC;缓慢扩散;空位迁移率;自扩散;示踪扩散;嵌入原子方法 (EAM) 摘要:我们基于 Foiles、Baskes 和 Daw(Foiles、Baskes 和 Daw Phys Rev B 1986)久经考验的嵌入原子方法功能,研究了由 Cu、Ag、Au、Ni、Pd 和 Pt 形成的 57 种随机等摩尔合金中的空位辅助扩散。我们回应了 W. Yeh 等人的建议,Advanced Engineering Materials,2004 年),即增加成分数量会导致随机等摩尔合金中的扩散“缓慢”。使用分子动力学 (MD) 模拟具有单个空位的随机合金,结合空位形成的计算,我们提取了每种合金中空位辅助扩散率。在开发和应用了几种可能的“迟缓性”评估标准后,我们发现只有少数合金(从 1 到 8,取决于迟缓性的定义)表现出迟缓扩散,而绝大多数合金的扩散速度更快,在相当多的情况下应该被认为是剧烈的(即比任何成分都快)。我们将扩散率与