1.4。在繁忙的机场中,空中交通流量管理(ATFM)是必要的。ATFM通过确保尽可能最大程度地利用机场容量来为安全,有序和迅速的空中流量做出贡献,并且交通量与适当的ATS权威宣布的容量兼容6。ATFM旨在确保在需求期望超过ATC系统的可用容量时确保最佳的交通流量。ATC容量反映了系统提供服务的能力,并在给定时间7中进入了空域的指定部分的飞机数量。ATZ被归类为B类空域,允许VFR和IFR流量。虽然IFR到达受到ATFM的插槽和流量控制,但VFR航班并非如此。入站和出站VFR航班受塔控制器的判断。因此,它为塔控制器增加了工作量。VFR飞机不受控制的流动机场可能会抵消疲劳管理,从长远来看,这可能是有害的,并且安全危险。ATC的认知和操作过程不仅根据所控制的飞机数量而异,而且还根据要解决的问题的数量和复杂性8。空中交通管制员报告的主要压力来源既连接到手术方面和组织结构。对于前者来说,最重要的是交通负荷,时间压力,限制和设备可靠性的峰值。后者主要涉及转移时间表,角色冲突,不利的工作条件以及对工作的缺乏控制9。
本文已被接受在本期刊的未来一期中发表,但尚未完全编辑。内容可能会在最终出版前发生变化。引用信息:DOI 10.1109/TAES.2020.3003106,IEEE 航空航天和电子系统学报
点合并提供了一个框架,可减少飞机在接近繁忙机场时进入“传统”等待航线的要求。通过点合并到达机场标准到达路线 (STAR) 的飞机无需雷达引导,而是沿着中间定位点 (IF) 的圆形“序列弧”飞行,然后由空中交通管制员 (ATCO) 引导到 IF 开始仪表进近。这种设计通过帮助开发和维护 ATCO 态势感知、提高自动化程度和减少管制员工作量来支持人类操作员。此外,点合并操作的好处符合 SESAR 的目标,包括提高安全性、降低 ATM 成本和增加空域容量(SESAR 联盟,2009 年)。
点合并提供了一个框架,可减少飞机在接近繁忙机场时进入“传统”等待航线的要求。通过点合并到达机场标准到达路线 (STAR) 的飞机无需雷达引导,而是沿着中间定位点 (IF) 的圆形“序列弧”飞行,然后由空中交通管制员 (ATCO) 引导到 IF 开始仪表进近。这种设计通过帮助开发和维护 ATCO 态势感知、提高自动化程度和减少管制员工作量来支持人类操作员。此外,点合并操作的好处符合 SESAR 的目标,包括提高安全性、降低 ATM 成本和增加空域容量(SESAR 联盟,2009 年)。
摘要:随着空中交通的增加,更好地管理和组织空中交通对于提高交通安全和空域容量至关重要。因此,需要对更复杂、更灵活的飞机轨迹进行临时描述,以允许高交通密度并限制环境影响。该方法包括通过拼接多条贝塞尔曲线从预先存在的控制点生成平滑的 4D 路径,同时确保接头处的 G2 连续性。此外,由于控制点和拟议轨迹之间的欧几里得距离由轨迹的最佳重塑控制,因此需要考虑轨迹的曲率-速度-负载因子之间的权衡。生成的轨迹旨在补充常规飞行计划,帮助解决空中交通冲突并通过更好的时间安排提高空中运力。Matlab 模拟证实了该方法的可行性,当为重塑算法定义距离范围时,显示出有希望的结果。
程序 SARP 和指导材料(例如 Doc 8168 号文件《空中航行服务程序 - 航空器运行》、《航空图手册》(Doc 8697 号文件)、《所需导航性能授权要求 (RNP AR) 程序设计手册》(Doc 9905 号文件)和《飞行程序设计质量保证手册》(Doc 9906 号文件))可提高安全性、增加终端空域容量和利用率,因为垂直起降场的兴起;改善机场/直升机场/垂直起降场并提高所有天气条件下的可达性。这项工作包括新的仪表飞行程序 (IFP) 设计标准,以应对不断发展的航空器能力和垂直起降场的新操作概念。这还包括将制图标准、数据库和航空电子系统指导与 eVTOL 和垂直起降场运营的 IFP 设计标准相协调。
摘要:飞机轨迹预测是进离场排序、冲突检测与解决等空中交通管理技术的基础。准确的轨迹预测有助于增加空域容量,确保飞机安全有序运行。目前的研究主要集中在单架飞机轨迹预测,没有考虑飞机之间的相互作用。因此,本文提出一种基于社会长短期记忆(S-LSTM)网络的模型,实现多架飞机轨迹协同预测。该模型为每架飞机建立一个LSTM网络,并通过一个池化层来整合关联飞机的隐藏状态,可以有效捕捉它们之间的相互作用。本文以北加州终端区的飞机轨迹为实验数据。结果表明,与主流的轨迹预测模型相比,本文提出的S-LSTM模型具有较小的预测误差,证明了该模型性能的优越性。另外,在存在飞机相互作用的空域场景中进行了对比实验,发现S-LSTM的预测效果优于LSTM,证明了前者考虑飞机相互作用的有效性。
摘要:本文的主要目的是分析空中交通管制员 (ATCo) 发现潜在冲突的概率。ATCo 确保飞机的安全,其主要功能之一是避免碰撞。避免碰撞被称为分离规定,该术语意味着通过侧面、垂直和纵向最小分离来确保每架飞机之间的安全距离。空中交通管制员必须确保高水平的空域容量。工作绩效与对个人特征、知识、技能以及空中交通特征的高要求有关。除了分析检测潜在冲突的概率外,研究对这一安全事件影响最大的因素被认为具有特殊意义,因为 ATCo 代表空中交通管制系统的最后一个执行部门,未能检测到潜在冲突可能会导致飞机之间最小间隔距离被违反,甚至发生碰撞。为了实施这种方法,将使用具有高预测能力的贝叶斯网络。此外,还将使用基于知识和 ANSP 提供的实际操作数据的双重方法。与当前文献中包含的数据相比,这些数据是本研究的一大优势。
根据业界对基于性能的导航 (PBN) 的需求,国际民航组织正在修订所需导航性能 (RNP) 概念,该概念涵盖区域导航 (RNAV) 和所需导航性能 (RNP)。基于性能的导航越来越多地被视为管理不断扩大的导航系统领域的最实用解决方案。在传统方法下,每项新技术都与一系列特定于系统的要求相关,包括障碍物净空、航空器分离、运行方面(例如到达和进近程序)、机组人员运行培训和空中交通管制员培训。然而,这种特定于系统的方法会给国际民航组织以及各国、航空公司和空中导航服务 (ANS) 提供商带来不必要的努力和费用。基于性能的导航消除了在制定标准以及运行修改和培训方面进行重复投资的需要。在基于性能的导航下,操作不是围绕特定系统构建的,而是根据操作目标定义操作,然后评估可用的系统以确定它们是否支持。这种方法的优点是它能够实现协调和可预测的飞行路径,从而更有效地利用现有飞机的能力,并提高安全性、增加空域容量、提高燃油效率,并解决
本文已被接受在本期刊的未来一期中发表,但尚未经过全面编辑。内容在最终出版前可能会发生变化。引文信息:DOI 10.1109/TAES.2020.3003106,IEEE 航空航天和电子系统学报