直接空气捕获(DAC)对于在2050年之前实现零净温室气体排放很重要。但是,使用吸附 - 吸附过程,超大型大气CO 2浓度(〜400份)为高CO 2捕获能力构成了强大的障碍。在这里,我们提出了刘易斯酸碱相互作用 - 与多胺-CU(II)复合物衍生的杂化杂交吸附剂,可实现超过5.0 mol的CO 2捕获/kg吸附剂,其容量是迄今为止大多数DAC吸尘器的容量近三倍。杂交吸附剂(例如其他基于胺的吸附剂)在小于90°C下的热解吸。此外,海水被证实为可行的再生剂,而解吸的CO 2同时被隔离为Innocte Innocte-Inocte ous,化学稳定的碱度(Nahco 3)。双模式再生提供了独特的灵活性,并以海洋作为脱碳水槽的促进,以扩大DAC的应用机会。
液化空气集团高级副总裁兼执行委员会成员 Pascal Vinet 负责监督欧洲工业活动,他表示:“该创新项目的特点是结合了多种解决方案,以生产可再生和低碳氢气,并为道达尔能源公司 Grandpuits 工厂的脱碳做出贡献。它还提供了回收二氧化碳的机会,作为循环经济方法的一部分,同时确保其用于农业食品应用。该项目展示了液化空气集团与客户合作提供定制解决方案的专业知识,以帮助他们减少碳足迹并积极参与应对全球变暖。它再次证明了氢气在能源转型中将发挥的关键作用。”
设备应在非危险区域和基本电磁环境中使用,后者在 EN 61326-1 中定义。避免强烈的机械冲击和振动。避免腐蚀性环境和受灰尘、油雾等严重污染的区域。使仪器远离阳光直射。突然的温度或湿度变化可能会影响传感器的灵敏度。
我们回顾了具有等速储层的晚期绝热压缩空气存储厂的分析模型的文献,重点是可以从模型中提取的见解。审查表明,文献中缺少拥有绝热储层,绝热涡轮机械以及没有油门的植物的模型。假设植物在准稳态状态下运行,我们继续得出这种模型,可以将空气视为热量和热完美的气体,并且热能存储单元不含热和压力损失。模型导致关键性能指标的封闭式表达式,例如植物效率和体积能量密度,就组成效率和压力比而言。这些表达式的推导基于涉及温度和压力的同时时间变化的近似积分。近似值导致相对误差小于1%。模型表明压缩和扩展工作,植物效率和最高工艺温度显示最小。该模型还表明,对于给定的非二维存储容量和最大储层压力,最小化最大过程温度的植物的最大效率大约等于最大化效率的植物的最低效率。对于具有绝热洞穴和绝热热能储存单元的两阶段工厂,我们的分析模型预测体积能量密度在4.76%以内,表明它足够准确,可以用于初始植物设计。
由空气质量会议学院 Lane Hatfield AL10 9AB 英国出版 ISBN:978-1-3999-2835-9 DOI:10.18745/PB.25560 建议引用:作者……(2022 年)。第 13 届国际空气质量会议论文集:科学与应用。由希腊塞萨洛尼基亚里士多德大学和英国赫特福德大学出版,第 XX 页,https://doi.org/10.18745/PB.25560 © 2022 作者。这是根据知识共享署名许可条款分发的开放获取作品(https://creativecommons.org/licenses/by/4.0/),允许在任何媒体中不受限制地重复使用、分发和复制,只要正确引用原始作品。制作: 希腊塞萨洛尼基亚里士多德大学传热与环境工程实验室 所有咨询请联系: Ranjeet S Sokhi 教授 大气与气候物理研究中心 (CACP) 物理、天文学和数学系 英国赫特福德郡大学 College Lane, Hatfield, AL0 9AB 电话:+44(0) 1707 284520 电子邮箱:r.s.sokhi@herts.ac.uk
冷冻空气干燥器是最常用的。压缩空气干燥器/气体干燥器类型,适用于大多数工厂应用,用于干燥工厂空气和其他公用气体,如密封气体、发电机冷却氢气、氮气干燥等。其中露点为 (+2) 度。C. 管线压力即(-22 ) 度。C. 大气压)是可接受的标准。这种类型的干燥器适用于粉煤灰输送、密封气体干燥。一般工厂空气、氢气干燥器用于发电机冷却应用和气动工具操作。
摘要:直接空气碳捕获和储存 (DACCS) 是一种新兴的二氧化碳去除技术,它有可能从大气中去除大量的二氧化碳。我们对不同的 DACCS 系统进行了全面的生命周期评估,这些系统具有二氧化碳捕获过程所需的低碳电力和热源,包括独立和并网系统配置。结果表明,所有八个选定地点和五种系统布局的温室气体 (GHG) 排放量为负,在低碳电力供应和废热使用的国家,GHG 去除潜力最高(高达 97%)。自主系统布局被证明是一种有前途的替代方案,在太阳辐射高的地方,GHG 去除效率为 79-91%,避免消耗基于化石燃料的电网电力和热能。对除温室气体排放以外的环境负担的分析表明,二氧化碳去除存在一些权衡,尤其是光伏 (PV) 电力供应系统布局的土地改造。敏感性分析揭示了选择合适的电网耦合系统布局位置的重要性,因为在二氧化碳密集型电网电力组合的地理位置部署 DACCS 会导致净温室气体排放,而不是温室气体去除。关键词:生命周期评估 (LCA)、直接空气碳捕获和储存 (DACCS)、二氧化碳去除 (CDR)、负排放技术 (NET)
摘要 建筑外围护结构中的空气泄漏是建筑物供暖和制冷需求的很大一部分原因。因此,快速可靠地检测泄漏对于提高能源效率至关重要。本文介绍了一种从外部确定建筑外围护结构中空气泄漏的新方法,将锁定热成像和鼓风机门系统的热激发相结合。鼓风机在建筑物内产生周期性的过压,导致外表面(立面)泄漏附近的表面温度发生周期性变化。通过以已知频率激发的温度变化,以激发频率对热图像的时间序列进行傅里叶变换,可得到突出显示泄漏影响区域的幅度和相位图像。红外摄像机的周期性激发和检测称为锁定热成像,广泛用于表征半导体器件和无损检测。激发通常通过光、电或机械能量输入实现。在本研究中,在 75 Pa 压差下,以三个 40 秒的激励周期对外墙进行了测量,总测量时间仅为 2 分钟。在光照、风和云量变化很大的条件下,空气温差为 5 至 7 K 时进行了测量。与最先进的差分红外热成像测量相比,测量结果显示检测质量更高,受环境条件变化的影响更小。该方法仅在激励频率下突出显示振幅图像的变化,从而过滤掉由环境影响引起的变化。因此,低至几开尔文的温差就足够了,可以从外部检查大型外墙。该振幅图像已经比用差分热成像创建的图像更清晰。使用标量积对振幅进行相位加权,可以进一步减少图像中不需要的伪影。关键词 锁定、热成像、鼓风机门、气密性、泄漏检测、建筑围护结构、建筑节能 1 引言 不受控制的气流通过建筑围护结构,造成 30-50% 的建筑物供暖能耗 (Kalamees,2007 年;Jokisalo 等人,2009 年;Jones 等人,2015 年)。因此,气密性评估,特别是快速可靠地定位泄漏,对于减少供暖能源需求至关重要。风扇加压法或鼓风机门测试在多项国际标准 (Deutsches Institut für Normung e. V.,2018 年;ASTM,2019 年) 中有规定,用于测量建筑物的整体气密性。然而,泄漏定位很麻烦,需要