TimothéRobineau,Auline Rodler,Benjamin Morille,David Ramier,JérémieSage等。与水文和小气候模型耦合,以模拟从城市绿色区域和空气温度的蒸散量。城市气候,2022,44,pp.101179。10.1016/j.uclim.2022.101179。hal-04524035
城市热岛(UHIS)已经研究了100多年(Stewart,2019年)。根据背景农村温度和峰值城市温度之间的变化,它们定义为39(Oke,40 1973)。开创性的工作从十九世纪初到二十世纪初期,强调了城市对温度的41影响(霍华德,1833年;雷诺,1868年)。1920年至1940年42年的创新方法有助于量化和映射这种效果(Schmidt,1927)和实验研究43从1950年到1980年,对此有了更好的了解(Sundborg,1951年)。本研究源于44个通过移动45运动来衡量城市温度的创新方法所做的工作。它评估了城市环境46中土地表面特性对温度的影响以及由表面特性近似引起的相关不确定性。47
对大气温度的精确预测对于各种应用,例如农业,能源,公共卫生和运输至关重要。现代技术的进步导致了传感器和其他工具的开发,以收集高频空气温度数据。但是,由于其特定特征,包括高维度,非线性,季节性依赖性等,准确的预测是具有挑战性的。为了应对这些预测挑战,本研究提出了一个基于组件估计技术的功能建模框架,通过将空气温度时间序列划分为确定性和随机组件。使用广义添加剂建模技术对每日和每年的季节性组成的确定性组成部分进行了建模和预测。同样,解释该过程短期动力学的随机组件是由功能自回旋模型,自动回归积分移动平均平均值和向量自回归模型对过程进行建模和预测的。为了评估模型的性能,从伊斯兰堡,巴基斯坦收集了每小时的空气温度数据,并获得了一日样本的预测。使用根平方误差,平均绝对误差和平均绝对百分比误差比较所有模型的预测结果。结果表明,与Arima和VAR模型相比,所提出的远距离模型的性能相对较好,从而导致样本外预测误差。这项研究的发现可以促进跨部门的明智决策,优化资源分配,增强公共安全并促进社会经济的韧性。
使用DNDC(denitrifi阳离子分解)模型(版本9.5)来预测多年生草的蒸腾和光合作用速率(红三叶草和提摩太教)的差异,以及一种砂质苏普固醇的自亲呼吸。在模型实验中使用了两个生长季节的输入参数(从2010年5月1日至2015年8月31日至2015年8月31日)。在2010年,该周期的平均空气温度为14.1±3.3°C,总降水量为0.1796 m,而在2015年,平均空气温度为16.8±5.5°C,总降水量为0.538 m。这些气象参数对2010年的植物不利,2015年有利。结果表明,DNDC模型充分预测了多年生草的总和平均蒸腾率的天气引起的差异:0.12204 m。和0.00099±0.00040 M.Day -1分别在2015年有利的气象条件下和0.05969 m。和0.00049±0.00035 m.day -1,在2010年不利的气象条件下。植物的每日蒸腾率的动力学显着(r = 0.34 p <0.001)与土壤水含量仅在不利的气象条件下相关。模拟光合作用速率的平均值等于2015年的84.4±27.9 kg.c.c.hha -1。天-1,2010年52.3±23.4 kg.c.hha -1 .day -1 .day -1 -1在2010年。在两种天气情况之间的光合作用速率的平均值中存在显着的差异(p <0.001)。单向方差分析(ANOVA)的结果表明,在有利的(8.14±2.25 kg.c.h -1 .day -1)下,自养呼吸的速率比不利(8.14±2.25 kg.c.ha -1 .day -1)高于不利(5.17±2.17±2.19±2.19±2.19 kg.c.c.ha -1 .day -1 .day -1 .day -1)。
I. 引言 气候分析是现代社会的一个重要过程。通过记录一段时间内的天气状况,可以预测世界各地的未来天气模式 [1]。这影响到农业、旅游业和可再生能源等各个领域 [2]。由于社会对气候分析的依赖,需要可靠的天气测量。气温是被广泛记录和估计的天气变量之一 [3]。它可以在地球表面或通过卫星测量。ERA5 是使用卫星测量对世界气候进行的大气再分析,由欧洲中期天气预报中心 (ECMWF) 1 提供。再分析结合物理定律,将观测和模型数据结合成一个综合数据集。为了分析气温等陆地表面变量,ERA5 使用陆地数据同化系统,该系统与 4D 变分数据同化 [4] 弱耦合。ERA5 取代了 ERA Interim 再分析,并提供了多项改进,例如比陆地性能更好 [5]。它还提供了高空间和时间分辨率,并提供跨越几十年的数据。所有这些因素都表明 ERA5 是
这项研究分析了迪管(法国东部)城市温度的移动测量值,以量化城市形式对空气温度微尺度变化的影响。在33个春季和夏季的夜晚,一条骑自行车的骑自行车(veloclim)都相同骑了一条路线。这些夜晚遵循有利于形成热对比和城市热岛(UHIS)的阳光平静的日子。使用两种类型,Corine土地覆盖(CLC)和当地气候区(LCZ),用于评估基于方差分析(ANOVA)的空气温度的影响。ANOVA适用于跑步的平均值,以最大程度地发挥表面状态的影响,并分别跑步以最大程度地发挥天气条件的影响。结果表明,两种类型都证明了研究植被和人造区域对城市温度的影响的相关和补充。城市内部尺度上的温度变化被城市形式和土地覆盖类型显着调节。植被区比不透水的表面更凉爽。独立于气象结构,城市形式对空气温度有决定性的影响,并且每个CLC或LCZ类别具有原始的空气温度签名。
温度补偿范围:15-35°C (60-95°F):测量范围:0-70°C (32-158°F) 准确度:读数的 ±5% 或 ±0.05m/s (10fpm) 测量准确度 1:±1°C (1.8°F) 读数的 ±10% 或 ±0.05m/s (10fpm) 分辨率:±0.1°C 重复性:读数的 ±1% 温度补偿范围:F900 是热气流传感器;它对空气密度的变化很敏感,并根据一组标准条件(25°C (77°F)、760mmHg (101.325kPa) 和 0%RH)指示速度。F900 的设计使得当在规定的温度补偿范围内使用时,传感器指示非常接近实际空气速度,并且只需要最小的补偿来考虑气压或高度的变化。相对湿度的变化影响很小,通常可以忽略不计。
1 2 3 4 MD-82 商用客机头等舱的精确高分辨率边界条件和流场 6 7 刘伟 1 , 温继洲 1 , 赵江月 1 , 尹伟友 1 , 沈晨 1 , 赖代一 1 , 林朝欣 8 2 , 刘俊杰 1 , 孙河江 1,* 陈庆艳 1,3 9 10 1 天津大学环境科学与工程学院,天津 300072,11 中国 12 2 波音民用飞机环境控制系统,华盛顿州埃弗里特 98203,美国 13 3 普渡大学机械工程学院,印第安纳州西拉斐特 47907,美国 14 15 * 电子邮件地址:sunhe@tju.edu.cn 16 17 摘要 18 19商用客机客舱对于创造热舒适和健康的客舱环境至关重要。除了客舱几何形状和家具外,流场还取决于扩散器处的热流体边界条件。为了研究客舱内的流场,本文介绍了一种获取客舱几何形状、扩散器边界条件和流场的程序。本研究使用激光跟踪系统和逆向工程生成了 MD-82 飞机客舱的数字模型。尽管该系统的测量误差很小,但仍然需要近似和假设以减少工作量和数据量。几何模型还可用于轻松计算空间体积。采用热球风速计 (HSA) 和超声波风速计 (UA) 组合来获取扩散器处的速度大小、速度方向和湍流强度。测量结果表明,实际客舱内的流动边界条件相当复杂,速度大小、速度方向和湍流强度在不同缝隙开口之间差异很大。还使用 UA 测量 20 Hz 下的三维空气速度,这也可用于确定湍流强度。由于流动的不稳定性,应至少测量 4 分钟才能获得准确的平均速度和湍流信息。结果发现,流场速度低、湍流强度高。这项研究为验证计算流体力学 (CFD) 模型提供了高质量数据,包括客舱几何形状、扩散器边界条件和 MD-82 商用客机头等舱的高分辨率流场。 关键词:客机客舱;客舱几何形状;流场;实验;扩散器 41 42 1. 引言 43 44 商用客机客舱中的空气分布用于维持乘客和机组人员的热舒适度 45 和空气质量。这些空气分布可以控制空气温度和 46 空气速度场,并可以稀释气体和颗粒浓度。尽管 47 航空航天工业在过去 48 十年中已经改善了飞机客舱的热舒适度和卫生状况(Space et al.,2000),空气分配系统需要进一步改进。49
1 2 3 4 MD-82 商用客机头等舱的精确高分辨率边界条件和流场 6 7 刘伟 1 , 温继洲 1 , 赵江月 1 , 尹伟友 1 , 沈晨 1 , 赖代一 1 , 林朝欣 8 2 , 刘俊杰 1 , 孙河江 1,* 陈庆艳 1,3 9 10 1 天津大学环境科学与工程学院,天津 300072,11 中国 12 2 波音民用飞机环境控制系统,华盛顿州埃弗里特 98203,美国 13 3 普渡大学机械工程学院,印第安纳州西拉斐特 47907,美国 14 15 * 电子邮件地址:sunhe@tju.edu.cn 16 17 摘要 18 19商用客机客舱对于创造热舒适和健康的客舱环境至关重要。除了客舱几何形状和家具外,流场还取决于扩散器处的热流体边界条件。为了研究客舱内的流场,本文介绍了一种获取客舱几何形状、扩散器边界条件和流场的程序。本研究使用激光跟踪系统和逆向工程生成了 MD-82 飞机客舱的数字模型。尽管该系统的测量误差很小,但仍然需要近似和假设以减少工作量和数据量。几何模型还可用于轻松计算空间体积。采用热球风速计 (HSA) 和超声波风速计 (UA) 组合来获取扩散器处的速度大小、速度方向和湍流强度。测量结果表明,实际客舱内的流动边界条件相当复杂,速度大小、速度方向和湍流强度在不同缝隙开口之间差异很大。还使用 UA 测量 20 Hz 下的三维空气速度,这也可用于确定湍流强度。由于流动的不稳定性,应至少测量 4 分钟才能获得准确的平均速度和湍流信息。结果发现,流场速度低、湍流强度高。这项研究为验证计算流体力学 (CFD) 模型提供了高质量数据,包括客舱几何形状、扩散器边界条件和 MD-82 商用客机头等舱的高分辨率流场。 关键词:客机客舱;客舱几何形状;流场;实验;扩散器 41 42 1. 引言 43 44 商用客机客舱中的空气分布用于维持乘客和机组人员的热舒适度 45 和空气质量。这些空气分布可以控制空气温度和 46 空气速度场,并可以稀释气体和颗粒浓度。尽管 47 航空航天工业在过去 48 十年中已经改善了飞机客舱的热舒适度和卫生状况(Space et al.,2000),空气分配系统需要进一步改进。49
1 2 3 4 MD-82 商用客机头等舱的精确高分辨率边界条件和流场 6 7 刘伟 1 , 温继洲 1 , 赵江月 1 , 尹伟友 1 , 沈晨 1 , 赖代一 1 , 林朝欣 8 2 , 刘俊杰 1 , 孙河江 1,* 陈庆艳 1,3 9 10 1 天津大学环境科学与工程学院,天津 300072,11 中国 12 2 波音民用飞机环境控制系统,华盛顿州埃弗里特 98203,美国 13 3 普渡大学机械工程学院,印第安纳州西拉斐特 47907,美国 14 15 * 电子邮件地址:sunhe@tju.edu.cn 16 17 摘要 18 19商用客机客舱对于创造热舒适和健康的客舱环境至关重要。除了客舱几何形状和家具外,流场还取决于扩散器处的热流体边界条件。为了研究客舱内的流场,本文介绍了一种获取客舱几何形状、扩散器边界条件和流场的程序。本研究使用激光跟踪系统和逆向工程生成了 MD-82 飞机客舱的数字模型。尽管该系统的测量误差很小,但仍然需要近似和假设以减少工作量和数据量。几何模型还可用于轻松计算空间体积。采用热球风速计 (HSA) 和超声波风速计 (UA) 组合来获取扩散器处的速度大小、速度方向和湍流强度。测量结果表明,实际客舱内的流动边界条件相当复杂,速度大小、速度方向和湍流强度在不同缝隙开口之间差异很大。还使用 UA 测量 20 Hz 下的三维空气速度,这也可用于确定湍流强度。由于流动的不稳定性,应至少测量 4 分钟才能获得准确的平均速度和湍流信息。结果发现,流场速度低、湍流强度高。这项研究为验证计算流体力学 (CFD) 模型提供了高质量数据,包括客舱几何形状、扩散器边界条件和 MD-82 商用客机头等舱的高分辨率流场。 关键词:客机客舱;客舱几何形状;流场;实验;扩散器 41 42 1. 引言 43 44 商用客机客舱中的空气分布用于维持乘客和机组人员的热舒适度 45 和空气质量。这些空气分布可以控制空气温度和 46 空气速度场,并可以稀释气体和颗粒浓度。尽管 47 航空航天工业在过去 48 十年中已经改善了飞机客舱的热舒适度和卫生状况(Space et al.,2000),空气分配系统需要进一步改进。49