西尼罗病毒(WNV)是一种由蚊子传播并引起人类,人类,马和鸟类的发烧和脑炎的重新引起的人畜共患病原体。尽管所有WNV谱系都会引起人类疾病,但由于其在欧洲的迅速蔓延,并且在欧洲的迅速蔓延而引起了较大的疾病,因此在欧洲的引起了较大的疾病,因此预防了严重的疾病,因此爆发了爆发。乌克兰与欧洲其他一些地区一样,爆发确实会定期发生。这正成为令人震惊的趋势。在这项研究中,我们专注于生物气候预测因子设想欧洲WNV爆发的能力,特别着重于乌克兰。为此,我们采用了一种机器学习方法来绘制预测和XAI(即可解释的人工智能)的SHAP框架来对最具影响力的WNV驱动程序进行排名和揭示。在生物气候预测器的条款中,对于欧洲量表的SDM构造最重要的是,欧洲季度和温度季节的平均空气温度是欧洲频率和温度季节的平均空气温度。我们的模型表明,在即将到来的健康威胁下,西方地区(不包括喀尔巴阡高地)和乌克兰以南。
摘要内部可变性与起伏有关,该波动源自气候成分固有的过程及其相互作用。另一方面,强迫变异性描述了外部边界条件对物理气候系统的影响。一种方法是为了区分表面空气温度内的内部和强制变异性。使用噪声到数字的方法用于训练神经网络,在内部变异性和图像噪声之间进行类比。使用从1901年到2020年的表面空气温度数据编制了大型训练数据集,该数据是从大气 - 海洋通用循环模型模拟的合奏中获得的。用于培训的神经网络是U -NET,这是一个主要用于图像分割的广泛采用的卷积网络。为了评估性能,从两个单模型初始条件大合奏,集合平均值和U -NET的预测进行比较。U -NET在区域尺度上观察到了显着的差异,但UNET将内部变异性降低了四倍。在证明了厄尔尼诺南部振荡的有效过滤时,U -NET遇到了捕捉北大西洋变化的挑战。这种方法具有扩展到其他物理变量的潜力,从而促进了对长期外部强迫触发的气候变化的见解。
摘要 随着全球范围内越来越多地采用风能和太阳能等可再生能源,电网面临着可再生能源生产固有变化带来的挑战。能源灵活性是解决这种可变生产整体解决方案的重要组成部分。建筑物是全球最大的能源消耗者。然而,它们也有能力变得灵活。本文研究了符合迪拜建筑规范的典型热性能的建筑区域的潜在能源灵活性,该建筑区域的主要能源负荷是制冷。冷却负荷通过迪拜典型的对流空调系统提供,控制策略基于区域空气温度设定值。调节区域空气温度会导致冷却负荷发生显著变化,从而通过建筑物热质量提供一定量的能源灵活性,然后可用于转移和减少峰值需求。我们利用两个能源灵活性指标,即可用结构能量存储容量 (C ADR) 和存储效率 (η ADR),评估了三种策略对热区的影响。我们发现,在 7 月的典型一天中,所分析区域可以达到高达 570 Wh/m 2 的灵活性,并实现长达 3 小时的负载转移,具体取决于所采用的策略。关键词:对流冷却、需求响应、能源灵活性、电网互动、峰值需求、热质量。
摘要。本研究致力于研究太阳辐射和高环境空气温度对数字电压互感器工作的影响。开发的数字电压互感器设计包含在技术和商业电能消耗计量的智能电网系统中。对俄罗斯夏季条件下数字电压互感器工作的不利条件进行了分析。介绍了借助基于有限元法的 COMSOL Multiphysics 程序获得的变压器热状态数学模拟结果。在经过验证的数学模型上对电阻分压器变压器的热场进行了实验研究,以确定电阻元件自热最小的位置。
其空气周转率通常超过 100 ach。由于散热装置不会将室外空气引入空间,因此降低了室外空气污染物 1 对信息和通信技术 (ICT) 设备产生不利影响的风险。此外,空间湿度和压力不受影响,从而有可能降低加湿成本并保持数据大厅内更稳定的湿度水平。单个或多个补充空气装置配备 MERV 8 和 MERV 13 过滤器,并根据当地气候要求配备除湿和加湿功能,可提供建议的通风 2 (建议至少为 0.25 ach) 和湿度控制。加湿可以使用直接蒸发介质利用回风中的热量来实现。IASE 装置专注于一个目标:散热。与水侧 3 和湿球 4 省煤器系统不同,IASE 系统可以在较冷的环境条件下干运行,从而降低年用水量并消除冻结问题。当室外空气温度低于 48.5°F (9.2°C) 时,使用效率为 50% 的 HX,或当室外空气温度低于 66.2°F (19°C) 时,使用效率为 75% 的 HX,IASE 系统能够实现 100% 的干运行散热(基于热通道温度为 101.5°F [38.6°C],冷却至 75°F [23.9°C])。调节混合空气挡板和泄压风扇/挡板不是散热循环的一部分。IASE 系统可实现
•该项目应对与化石燃料相比,将太阳能生产与农田的农业生产相结合的挑战与生产可再生能源所需的土地有关。•好处包括产生能量,减少用水量,增加农作物产量以及最大程度地减少对自然土地的影响。太阳能电池板提供的阴影降低了空气温度和水的蒸发,而植物发出的水蒸气有助于冷却板并提高效率。•创建这种双重用途的土地使农民可以通过出售未使用的电力并降低自己的能源成本来使收入多样化。•Delano校园的Agrivoltaics示范项目将提供
电压:120 Vac, 50-60 Hz 标称电流消耗:8.4 A 功率:1000 W 10 厘米处的空气温度:55 °C 空气流量:101.7 m³/hr 预计干燥时间:少于 15 秒 安全关闭时间:60 秒 风速:90 m/s 激活范围:自动可调 180 毫米(最大)。电气保护:自动复位恒温器,在 105°C 时关闭电机,热熔断器在 139°C 时切断噪音水平:78 dB
我们做了什么?对于军用直升机上使用的特定涡轴发动机,我们开发了一种数据驱动方法,从少量传感器数据(即发动机扭矩、动力涡轮入口温度、空气速度、外部空气温度和压力高度)中经验性地得出发动机整体状况的测量值。我们能够识别发动机随时间推移的退化,并将其与特定的使用模式和维护操作相关联。这使直升机操作员能够根据直升机的作战区域和使用情况进行预测性维护。该模型已根据历史数据(已知发动机故障)进行了验证。
精心控制 您对磨机的控制越多,研磨效率就越高。我们的球磨机包括监控系统,用于连续测量材料和空气温度以及磨机出口的压力。磨机的通风由磨机风扇入口处的阻尼器调节。并且通过传感器连续监测材料填充水平。对于在闭路中运行的球磨机,通过称重分离器中的废料流量来监测循环负荷。这些措施可确保您实现最佳的磨机性能,为您提供所需的质量、效率和可靠性。
每天有成千上万架飞机飞行,这为收集气象信息提供了一种高效且经济的方式。对于大多数现代飞机而言,飞机的传感器在飞行时会测量空气温度、风速和风向、气压和其他大气变量,因为这些信息对于飞机的导航系统和监控飞机性能必不可少。虽然这些数据被用作支持飞行操作的一系列机载应用程序的输入,但它们也经常通过飞机通信系统自动传输到航空公司,供运营商的技术部门进行性能监控。对于飞机气象数据中继 (AMDAR) 观测系统,可以通过特定软件包(AMDAR 机载软件 (AOS))访问与气象相关的信息,以生成 ABO。