摘要 由于缺乏大气层来中和温度,没有热控制的外层空间物体会发生大的温度波动。有效的温度管理技术(TMT)对于避免极端热条件造成的不良影响至关重要。然而,现有的高性能 TMT 给航天器有限的质量和功率预算带来了额外的负担。最近,温度自适应太阳能涂层(TASC)和温度自适应辐射涂层(TARC)作为具有优异热性能的陆地物体的新型轻质、无能耗温度调节方法而出现。在这里,我们模拟并展示了 TASC 和 TARC 作为未来空间物体被动式 TMT 的巨大潜力。以一颗安装了 TARC 覆盖的机体太阳能电池板的地球同步卫星为例,即使在日食发生的情况下,其内部温度波动在一个轨道周期内也小至 20.3 C–25.6 C。这些发现深入了解了 TASC 和 TARC 在太空中的卓越性能,并将促进它们在外星任务中的应用。
一般情况下,LEO 物体的观测主要通过雷达系统进行,但 JAXA 一直致力于开发光学系统,以降低建设和运营成本。开发了一种用于 LEO 观测的大型 CMOS 传感器(图 2)。使用基于 FPGA 的图像处理技术分析来自 CMOS 传感器的数据可以帮助我们探测 10 厘米或更小的 LEO 物体。为了增加对 LEO 和 GEO 物体的观测机会,除了日本的入笠山天文台外,还在澳大利亚建立了一个远程观测站(图 3)。一台 25 厘米望远镜和四台 18 厘米望远镜可用于各种目的。另一个远程观测站将在澳大利亚西部建立,这将使我们能够使用来自澳大利亚两个站点的数据对 LEO 物体进行精确的轨道测定和高度估计。
准确推断空间物体的方向对于了解其运行状态和协调有效的空间交通管理至关重要。为了制定解决方向推断问题所需的框架,我们分析了几种标准的旋转数学表示,重点是连续性、唯一性和深度学习效率。在此基础上,我们自然而然地想到实现一种鲜为人知但表现良好的 6D 旋转表示。对于我们的推理模型的输入,我们采用了一种距离不变的观测技术,该技术长期以来一直用于在最小尺度上探索宇宙的最远处——光谱学。在深度卷积神经网络 (CNN) 的帮助下,我们研究了使用模拟的原始长缝光谱图像来推断未解析的大轨道半径范围内空间物体方向的可行性。我们介绍了在多个空间物体的光谱图像上训练 CNN 的方法和结果,目的是 i) 标准化旋转分析中使用的测量方法,ii) 建立基于光谱的性能的上限,以及 iii) 为未来将光谱应用于空间领域感知的工作扩展提供简单场景的基线。
我们的新数据集为我们提供了重叠的宽带红外颜色和相同颜色波段的高分辨率光谱。我们精心选择了目标,包括具有已知成分的混合物体,以便开发和评估新技术来解释我们的宽带近红外光度测定。由于所有之前发表的研究都集中在地球同步轨道上的物体上,因此 Molniya 有效载荷和 RB 的加入是对现有文献的独特补充。我们首次能够在相同类型的全分辨率近红外光谱的背景下分析近红外光度测定。我们提供了有关改进感兴趣的光谱带以进行表征的见解,并提供了一种使用效率更高的近红外光度测定技术来提高快速识别能力的方法。
第一个任务是,在完成主要太空运输任务后,在轨道上重复使用 ION-mk01 平台。与 SST 专家 NORSS 合作,该工作包专注于确定可用的硬件和任务架构,并与捕获和处理进入 ION 相机视野的非恒星物体的需求进行比较。然后制定了数据采集计划,以捕获恒星、深空物体和 RSO 的图像,并对数据传输和处理链的可实现质量和验证进行测试。这项工作包括探索数据提供模型,以确定如何将这些数据传播给负责提供联合警报和其他空间环境服务的组织,然后进行验证和描述。
摘要 当前,太空利用正在迅速增长。许多国家通过发射太空物体执行了各种任务。在向太空发射物体时,国家有几项必须履行的义务,至少根据作者的说法,有三项基本义务,即登记、监督和丢失时的责任。因此,本研究旨在提供有关如何根据国际法履行这些义务的信息。本研究采用的方法是规范性司法方法。规范性司法方法是通过查阅图书馆资料或二手资料作为研究基础,通过搜索与研究问题相关的法规和文献进行法律研究。太空物体的发射当然有一条法规,作为发射卫星等太空物体的标准。发射受 1976 年《登记公约》的管制,并在国际机构国际电信联盟登记(1976 年《登记公约》第 iv (1) 条)。除了登记空间物体外,国家还必须监督这些空间物体,以了解它们执行任务的情况(1967 年《外层空间条约》第六条),最后是因空间物体而造成损失时国家的责任。这在 1967 年《外层空间条约》(第七条)和 1972 年《责任公约》中都有规定。关键词:空间物体登记、空间物体监督、发射国对空间物体的责任。如何引用:Riza Amalia,“根据国际法,国家与向外层空间发射物体有关的义务”,《楠榜国际法杂志》(LaJIL)2,第 2 期(2020 年):79-86。DOI:https://doi.org/10.25041/lajil.v2i2.2035 A. 简介