时空卷积通常无法学习视频中的运动动态,因此需要一种有效的运动表示来理解自然界中的视频。在本文中,我们提出了一种基于时空自相似性(STSS)的丰富而鲁棒的运动表示。给定一系列帧,STSS 将每个局部区域表示为与空间和时间中邻居的相似性。通过将外观特征转换为关系值,它使学习者能够更好地识别空间和时间中的结构模式。我们利用整个 STSS,让我们的模型学习从中提取有效的运动表示。我们所提出的神经块称为 SELFY,可以轻松插入神经架构中并进行端到端训练,无需额外监督。通过在空间和时间上具有足够的邻域体积,它可以有效捕捉视频中的长期交互和快速运动,从而实现鲁棒的动作识别。我们的实验分析表明,该方法优于以前的运动建模方法,并且与直接卷积的时空特征互补。在标准动作识别基准 Something-Something-V1 & V2、Diving-48 和 FineGym 上,该方法取得了最佳效果。
高光谱图像 (HSI) 分类旨在为每个像素分配一个唯一标签,以识别不同土地覆盖的类别。现有的 HSI 深度学习模型通常采用传统学习范式。作为新兴机器,量子计算机在嘈杂的中尺度量子 (NISQ) 时代受到限制。量子理论为设计深度学习模型提供了一种新的范式。受量子电路 (QC) 模型的启发,我们提出了一种受量子启发的光谱空间网络 (QSSN) 用于 HSI 特征提取。所提出的 QSSN 由相位预测模块 (PPM) 和受量子理论启发的类测量融合模块 (MFM) 组成,以动态融合光谱和空间信息。具体而言,QSSN 使用量子表示来表示 HSI 长方体,并使用 MFM 提取联合光谱空间特征。量子表示中使用了 HSI 长方体及其由 PPM 预测的相位。使用 QSSN 作为构建块,我们进一步提出了一种端到端的量子启发式光谱空间金字塔网络 (QSSPN),用于 HSI 特征提取和分类。在这个金字塔框架中,QSSPN 通过级联 QSSN 块逐步学习特征表示,并使用 softmax 分类器进行分类。这是首次尝试将量子理论引入 HSI 处理模型设计。在三个 HSI 数据集上进行了大量实验,以验证所提出的 QSSPN 框架相对于最新方法的优越性。
“水下时间”仅受潜水员疲劳和任务时间压缩的限制;原本需要一周时间的维护任务(包括计算舱和水下时间)可以在一天内完成。Can-Dive 已经研究 Newtsuit 三年了,它仍处于研发阶段,但计划于今年进行高级操作试验。这一发展最终可能被证明是一个完整的循环 spinotaf,它从航空航天技术转移,并最终产生可转移到航空航天系统的技术进步。NASA 正在研究用于舱外活动的宇航服设计,因为
E. Amaldi 基金会由意大利航天局和 Hypatia 研究联盟于 2017 年 3 月 28 日成立,这是一个雄心勃勃的项目,旨在提出一种新的方式来解释应用研究和技术转让,以支持国家科学遗产。E. Amaldi 基金会的主要目标是促进和支持旨在从航天领域开始的技术转让的科学研究,作为国家经济发展的基本工具以及提高竞争力、生产力和就业的创新源泉。
使用扩散模型进行图像修复通常使用预条件模型(即针对绘画任务进行微调的图像条件模型)或后条件模型(即在推理时重新用于绘画任务的非条件模型)。预条件模型在推理时很快,但训练成本极高。后条件模型不需要任何训练,但在推理过程中很慢,需要多次前向和后向传递才能收敛到理想的解决方案。在这里,我们推导出一种不需要昂贵训练但推理速度很快的方法。为了解决昂贵的推理计算时间,我们在潜在空间而不是图像空间上执行前向-后向融合步骤。这是通过扩散过程中新提出的传播模块解决的。在多个领域进行的实验表明,我们的方法达到或改善了状态
最近,Visual Transformer(VIT)及其以下作品放弃了卷积,并利用了自我发项操作,比CNN获得了可比甚至更高的精度。最近,MLP-Mixer放弃了卷积和自我发项操作,提出了仅包含MLP层的体系结构。为了实现交叉补丁通信,除了通道混合MLP外,它还设计了其他令牌MLP。在诸如JFT-300M之类的极限数据集上进行训练时,它会取得令人鼓舞的结果。,但是当在ImagEnet-1k等中等规模的数据集上训练时,它的表现不如其CNN和VIT对应。MLP混合使用的性能下降激励我们重新考虑令牌混合MLP。我们发现,MLP混合中的令牌混合操作是深度卷积的变体,具有全局接收场和空间特异性配置。在本文中,我们提出了一种新颖的纯MLP体系结构,即空间移位MLP(S 2 -MLP)。不同于MLP混合器,我们的S 2 -MLP仅包含通道混合MLP。我们设计了一个空间换档操作,以实现通过补丁之间的通信。它具有局部接收场,是空间的 - 不可知论。同时,它无参数且有效地计算。在Imagenet-1K数据集训练时,提出的S 2 -MLP比MLP混合剂具有更高的识别精度。同时,S 2 -MLP在ImageNet-1k数据集上具有出色的性能,具有更简单的架构,较少的失败和参数。
最近,知识被认定为印度经济可持续增长的最重要驱动因素。印度通过“数字印度”计划采用了新的信息制度,以实现经济可持续增长,从而支持良好的治理、可持续发展目标和赋予公民权利。在过去的三十年中,地理空间技术在各个领域的广泛应用已被证明是应对这些挑战的有效推动因素。印度政府科技部国家地理空间计划 (NGP) 前身为自然资源数据管理系统 (NRDMS),其能力建设计划旨在通过与各种合作伙伴组织合作的各种计划,发展国家地理空间科学和技术发展能力。为期三周的计划分为三个级别,即 1 级(标准)、1 级(空间思维)和 2 级。此外,还有为期三天的地理创新挑战计划。该计划的目标是与学术界和用户机构合作,建立知识和各个级别的治理并促进创新。
英国频道是东北大西洋地区最高的长期鱿鱼着陆点,使鱿鱼成为该地区运作的塞尔萨尔遗迹所利用的最有价值的资源之一。该资源由两个短寿命的长鱿鱼物种:loligo forbesii和L. vulgaris组成,它们的外观相似(它们没有被钓鱼者区分开),但在其生命周期的时间上有所不同:在L. forbesii中,在7月,在L. dufgaris招募的招聘峰会出现在L. dufgaris peak in Nevember中。头足类物种(例如Loligo spp。)的丰度和分布取决于有利的环境条件,以支持生长,繁殖和成功募集。This study investigated the role of several environmental variables (bottom temperature, salinity, current velocity, phosphate and chlorophyll concentrations) on recruitment biomass (in July for L. forbesii and November for L. vulgaris ), as based on environmental data for pre-recruitment period from the Copernicus Marine Service and commercial catches of French bottom trawlers during the recruitment period over the years 2000 to 2021.为了说明环境描述符与生物响应之间的非线性关系,将一般添加剂模型(GAM)拟合到数据中。在各自的招聘期内,获得了单独的模型,以预测法拉克利斯和福布西生物量指数。这些模型解释了生物量指数变化的很高比例(L. forbesii为65.8%,而福尔加里(L. vulgaris)的差异为56.7%),并且可能适合预测资源的丰度(以生物量)和空间分布。此类预测是指导经理的理想工具。由于这些模型可以在开始季节开始前不久进行,因此它们的常规实施将在实时填充管理中进行(由与短寿命物种打交道的薄薄的科学家促进)。