在鸟类和哺乳动物中出生后脑发育继续进行。然而,由于两个主要区别,这种发展的结果与人类的结果显着不同。首先,人类独特地体验了脑外脑中最长的大脑时期,持续至18岁。新生的黑猩猩的大脑重量的60%的成人形式,而人类新生儿的大脑仅占成年人类大脑大小的24%。第二个区别在于一个事实,即大脑和心理发展发生在始终后数千年和世代积累的文化环境中。一个延长的童年时期推断神经囊突触发生过程和以下突触修剪,特别是在前额叶叶片中,是根据生活经验来塑造的。这是在社会影响下发生神经发展的证据。3在延长的童年时期,大脑发育受到外部影响,微调大脑对其社会环境的敏感性。这个过程是通过出生后以各种形式积极地传播社会历史文化的。由于这两个因素,人脑完全是“社会大脑”。
肠道微生物群调节人体中的各种生理功能,包括消化,免疫调节,肠道屏障维持,甚至神经系统的活动。肠道微生物与大脑之间的双向通信(称为猪gut轴)对于平衡的代谢至关重要。最近的研究表明,肠道微生物群代谢产物,例如短链脂肪酸,吲哚衍生物,神经递质和其他生物活性化合物,可以对神经发生,髓鞘形成和轴突再生产生积极影响,从而在神经疗法和神经疗法的治疗策略中可能产生潜在的潜在。尽管对肠道微生物群代谢产物的研究越来越多,但了解它们在神经保护机制中的作用仍然有限。本文回顾了最著名的肠道微生物群代谢产物的分类,生产,功能和治疗潜力,及其对神经发生,突触发生,能量代谢,免疫调节和血脑屏障完整性的影响,将为肠道菌群的研究提供基础。
传统上,视网膜的主要功能被认为是捕获有意识的视觉信息。然而,很明显,眼睛在调节各种生理和行为过程中起着更广泛的作用,包括昼夜节律,睡眠和情绪。MRGC是视网膜神经节细胞的一部分,可独特地适应于非形象形成的大脑区域的光信息。本文探讨了MRGC参与促进大脑发育及其在理解和解决神经系统和神经精神疾病方面的潜在意义。在发育过程中,表达黑色素蛋白的内在光敏性视网膜神经节细胞(IPRGC)比杆和锥体早得多。IPRGCS项目针对许多下皮层区域,而这些预测的生理功能尚未完全阐明。在这里,我们发现IPRGC介导的光感觉促进了各种皮质和海马中锥体神经元的突触发生。这种现象取决于IPRGC的激活,并通过从上核(SON)和旁脑核核(PVN)释放到脑脊髓液[1]来介导催产素[1]。
骨关节炎(OA)是一种普遍的慢性变性关节疾病,其特征是软骨变性,关节炎症和疼痛。OA的发病机理仍然不清楚。在促成OA的各种因素中,细胞外基质(ECM)蛋白,尤其是血小板传播(TSP)的作用引起了极大的关注。TSP是多功能细胞外基质糖蛋白的家族,已知参与许多生理和病理学过程,包括细胞粘附,迁移,分化,血管生成,血管生成以及突触发生通过细胞细胞和细胞 - 基质相互作用。在这篇综述中,我们提供了OA发病机理中对TSP蛋白的当前理解的摘要,包括它们对软骨稳态,滑膜炎症以及软骨下骨重塑和关节炎疼痛的影响。我们还回顾了支持TSP蛋白作为诊断生物标志物和治疗靶标的潜力的证据,重点是最近的软骨再生,基因递送治疗和疼痛管理的进展。考虑到TSP蛋白在维持关节稳态的多方面作用,TSP蛋白出现为OA的有希望的治疗靶标。
摘要:大麻素在认知和运动障碍的治疗方法中引起了人们的关注,这是神经系统疾病的特征。迄今为止,已经从大麻sativa中提取了100多种植物大麻含量,其中一些已显示出神经保护性能以及影响突触传播的能力。在这项研究中,我们研究了鲜为人知的植物大麻素,大麻诺(CBNR)对神经元生理学的影响。使用NSC-34运动神经元细胞系和下一代测序分析,我们发现CBNR影响与突触组织和专业化相关的CBNR突触基因,包括与细胞骨架和离子通道有关的基因。特别是钙,钠和钾通道亚基(Cacna1b,cacna1c,cacnb1,grin1,scn8a,kcnc1,kcnj9),以及与NMDAR相关的基因(AGAP3,Syngap1)和CABP1,CABP1,CABKP1,CABKVV)细胞骨架和细胞骨架相关基因(ACTN2,INA,TRIO,MARCKS,MARCKS,MARCKS,BSN,RTN4,DGKZ,HTT)。这些发现突出了CBNR在调节突触发生和突触传播中所起的重要作用,这表明需要进一步研究来评估CBNR在治疗许多神经疾病中表征运动障碍的突触功能障碍中的神经保护作用。
运动恢复通常是中风康复的目标,是指中风前存在的正常运动模式的回归。6这可能与补偿不同,这涉及通常具有较低效率和运动质量的新运动表演的发展。7,8个人发生的运动恢复量在个体之间有所不同,并且与临床因素,诸如中风严重程度,中风后,皮质脊髓束完整性,中风后抑郁症,合并症,遗传学和康复质量有关。9作为中风后恢复独立性的一种自然尝试,有运动恢复和补偿性运动的发展。可以重新学习功能技能,因此基于经验的突触发生创建了新的神经联系。6运动补偿通常用于克服每日障碍。这可能导致学习的不使用,其中受影响较大的肢体在功能上不参与或学到的“不良使用”,在这种情况下,不良适应性运动的表现是开发出来并成为习惯的。10,11由于缺乏使用和对功能较大的肢体的偏爱,可能会在更受影响的一侧发生进一步的残疾。随着新运动模式在神经学上的根深蒂固,行为的这些变化驱动了神经塑性机制进一步限制了受影响的一面。6
背景:甲状腺激素(Th)是大脑发育和功能所必需的。浸泡9个大脑和脊髓的脑脊液(CSF)含有自由或经甲状腺素(TTR)结合。中枢神经10系统中的紧密甲状腺激素水平调节对于控制神经发生,髓鞘形成和突触发生的发育基因表达至关重要。这一综合的11个功能强调了开发精确和可靠的方法评估CSF中TH水平的重要性。方法:我们报告了12种基于LC-MS的方法,用于测量啮齿动物CSF和血清中的甲状腺激素,适用于新鲜和冷冻样品。13结果:我们发现怀孕大坝与非妊娠成年人以及胚胎与成人CSF的CSF甲状腺激素有着明显的差异。14此外,靶向的LC-MS代谢分析发现了这些人群中CSF中的不同中央碳代谢。结论:相关代谢途径的第15次检测和代谢物分析开放了对CSF甲状腺激素16的严格研究的新途径,并将为正常发育过程中CSF的代谢改变的未来研究提供信息。17 18
突触变化在记忆过程中起着重要作用。然而,即使在基础条件下,大脑状态对海马网络中突触反应的调节仍然知之甚少。我们记录了自由活动的雄性大鼠在五条海马通路上诱发的突触反应。我们发现,在齿状回穿通通路 (PP-DG) 突触处,清醒状态下的反应比睡眠状态下的反应要强。在 CA1 的 Schaffer 侧支 (SC-CA1) 突触处,非快速眼动睡眠 (NREM) 状态下的反应比其他状态下的反应要强。在快速眼动睡眠 (REM) 期间,PP-DG 和 SC-CA1 突触处的反应比 NREM 状态下的反应要弱,而穹窿至伏隔核突触处 (Fx-NAc) 处的反应比其他状态下的反应要强。相比之下,穹窿对内侧 PFC 突触 (Fx-PFC) 的反应和穹窿对杏仁核突触 (Fx-Amy) 的反应受警觉状态的调节较弱。延长睡眠时间会导致 PP-DG 和 Fx-Amy 突触发生突触变化,但不会导致其他突触变化。突触反应也与局部振荡有关,并且在 Fx-PFC 和 Fx-NAc 之间高度相关,但在 Fx-Amy 和这些突触之间不相关。这些结果揭示了突触特异性调节可能有助于睡眠-觉醒周期中的记忆巩固。
突触变化在记忆过程中起着重要作用。然而,即使在基础条件下,大脑状态对海马网络中突触反应的调节仍然知之甚少。我们记录了自由活动的雄性大鼠在五条海马通路上诱发的突触反应。我们发现,在齿状回穿通通路 (PP-DG) 突触处,清醒状态下的反应比睡眠状态下的反应要强。在 CA1 的 Schaffer 侧支 (SC-CA1) 突触处,非快速眼动睡眠 (NREM) 状态下的反应比其他状态下的反应要强。在快速眼动睡眠 (REM) 期间,PP-DG 和 SC-CA1 突触处的反应比 NREM 状态下的反应要弱,而穹窿至伏隔核突触处 (Fx-NAc) 处的反应比其他状态下的反应要强。相比之下,穹窿对内侧 PFC 突触 (Fx-PFC) 的反应和穹窿对杏仁核突触 (Fx-Amy) 的反应受警觉状态的调节较弱。延长睡眠时间会导致 PP-DG 和 Fx-Amy 突触发生突触变化,但不会导致其他突触变化。突触反应也与局部振荡有关,并且在 Fx-PFC 和 Fx-NAc 之间高度相关,但在 Fx-Amy 和这些突触之间不相关。这些结果揭示了突触特异性调节可能有助于睡眠-觉醒周期中的记忆巩固。
除了作为神经递质的作用外,血清毒素还在哺乳动物大脑的发育中起着重要作用(Lauder 1990; Whitaker-Azmitia 1991)。特别是可能影响突触发生(Chubakov等人1986)。 至少部分通过5-HT1A受体连接的Neu-Rotrophic因子S- LO0B从星形胶质细胞中引起了5-羟色胺对未成熟靶区域的影响(Whitaker- Azmitia等人。 1990)。 最近,已经很明显的是,成人大脑中仍然存在许多发展的方面,并且可能在维持诸如树突等大脑结构中发挥作用。 具体而言,对于5-羟色胺系统,成熟大脑中的5-HT1A受体仍在troglial细胞上发现,并且仍然能够释放S- LO0B(Az-Mitia和Whitaker-Azmitia 1991; Whitaker-Azmitia et1986)。至少部分通过5-HT1A受体连接的Neu-Rotrophic因子S- LO0B从星形胶质细胞中引起了5-羟色胺对未成熟靶区域的影响(Whitaker- Azmitia等人。1990)。最近,已经很明显的是,成人大脑中仍然存在许多发展的方面,并且可能在维持诸如树突等大脑结构中发挥作用。具体而言,对于5-羟色胺系统,成熟大脑中的5-HT1A受体仍在troglial细胞上发现,并且仍然能够释放S- LO0B(Az-Mitia和Whitaker-Azmitia 1991; Whitaker-Azmitia et