• 用于立方体卫星的微型 Ka 波段大气雷达 (miniKaAR-C) • Ka 波段雷达抛物面可部署天线 (KaRPDA) - 为地球科学提供降水剖面雷达任务 • 角色和职责
自诞生以来,立方体卫星就成为了太空网络和探索领域最令人兴奋的技术,因为与同类传统卫星相比,立方体卫星的成本和复杂性更低 [1]。这使得太空任务的设计和运行周期成倍加快,也增加了人们对太空领域高风险企业的激励 [2]。这些突破为私有化太空网络时代铺平了道路,例如 SpaceX Starlink 星座 [3]。要充分释放太空网络的潜力,需要更高的数据速率和高度紧凑的设备 [4]。从这个角度来看,太赫兹 (THz) 频段(从 0.1 THz 到 10 THz)是一种巨大的频谱资源,可用于开发可用于下一代立方体卫星的无线技术 [5]。 THz 波段技术非常适合立方体卫星,因为它具有可维持极高数据速率的大型连续带宽,以及 THz 频率的亚毫米波长,这自然会产生高度紧凑的设备 [6]。然而,THz 频率下非常高的路径损耗仍然是电磁 (EM) 频谱这一部分未被充分利用的关键原因。一方面,THz 频率会因与特定频率下的某些气体分子(主要是水蒸气)的共振峰而遭受吸收损耗 [7]。尽管如此,如 [8] 中详细讨论的那样。太空中没有大气介质,因此吸收损耗减少,使 THz 波段成为卫星间通信链路的理想选择。同时,由于低地球轨道 (LEO) 内的大气存在减少,可以通过适当选择避免这些吸收峰的设计频率来减轻上行链路和下行链路期间的吸收损耗。另一方面,THz 频率的波长非常小,导致
TEPCE 是一颗 3U 立方体卫星,旨在探索使用电动力推进航天器的可行性。推进力是通过沿着连接两个航天器末端质量的长线(称为系绳)传导电流产生的。当航天器沿其轨道移动时,地球磁场会在磁场和系绳中的电子之间产生洛伦兹力,从而为航天器提供推力。它不需要化学或其他传统燃料源。TEPCE 是首批自给式电动力推进航天器之一。TEPCE 于 2019 年 6 月 25 日搭载 SpaceX Falcon Heavy 火箭发射。这是一艘成功的航天器,展示了可使航天器利用电动力学原理进行机动的机械和电气系统。
请描述您的公司和您要解决的问题:随着进入太空市场的门槛降低,小型卫星的普及度正在迅速提高。采用小型卫星商业模式的公司几乎每天都会出现,他们使用小型卫星提供广泛的服务,包括地球成像、射频监测、甲烷监测、船舶和飞机跟踪等等。所有这些系统都需要一种方法将越来越多的数据从卫星传输到用户。这可以包括从一颗卫星到另一颗卫星的链接,或者从卫星直接到地面的链接。标准方法是使用在有限数量的核准频段内运行的射频发射器。为了满足这一需求,Blue Cubed LLC 提出了一种用于小型卫星通信系统的混合射频和光学架构,这将提供两全其美的解决方案;天气好时提供高速率的光学下行链路,而当光学链路不会关闭时,提供较低速率但有保证的射频下行链路。光学系统还可用于支持卫星之间的光学交联。 Blue Cubed LLC 已从科罗拉多大学博尔德分校获得 X 波段发射器的许可,目前该产品已上市销售。与此同时,Blue Cubed 正在开发高速率空间对空间光学发射器/接收器系统。该系统的光学元件已经开发并正在测试中,而电气元件目前正在开发中。Blue Cubed 已为其高度可制造且可自对准的 Cobalt 光学平台申请了专利。
10 Uruguay Antelsat 2014 11 Iraq Tigrisat 2014 12 Finland Aalto 2 2017 13 Bangladesh Brac Onnesha 2017 14 Ghana Ghanasat-1 2017 2017 15蒙古Mazaalai 2017 16 Slovakia SKBE SKBE SKBE SKBE 2017 2017 - 2017 - 2017 - 2017 - 2017年2017年肯尼亚1 Kenya 1Kuns-Pf 2018 19 Costa rica rica rica rica rica 2018 j 2 22 bhut bhut bhut bhut bhut bhut and bhut bhut and bhut n of and bhut n of bhut n n of bhut and bhut YAT(JO-97)2018 23 Sri Lanka Ravana 1 29 Nepal 2019 2019卢旺达WASAT-1 2019 26危地马拉Queztzal-1 2020 2020 27 Slovenia Trisat 2020 28 Monaco OSM-1 Cicero 2020 Cobess列表,作为第一个国家卫星列表
Linh 等人 35 发现用离子半径较大的碱金属(M = Li、Na 和 K)取代(Bi 0.5 M 0.5 )TiO 3 会增加其直接带隙。将 MCaF 3(M = K、Cs)中的 K 位取代为 Cs 位,可将带隙从间接变为直接,从而改善光学特性。36 Gillani 等人还报道将碱土金属(Mg、Ca、Ba)掺杂到 SrZrO 3 中可使带隙从间接变为直接。37,38 此外,利用静水压力将带隙从间接变为直接被证明是有益的,就像在许多立方钙钛矿中所看到的那样。 39 – 44 通过施加外部压力,卤化物立方钙钛矿 CsBX 3 (B ¼ Sn, Ge; X ¼ Cl, Br) 的带隙减小到零,从而导致半导体到金属的转变。45 – 49 在静水压力下,还对 Ca 基立方碱金属卤化物钙钛矿 KCaX 3 (X ¼ F, Cl) 50,51 和 ACaF 3 (A ¼ Rb, Cs) 进行了第一性原理研究。52,53
摘要:增材制造 (AM) 在航天领域的应用日益广泛,这促使我们研究了通过复合行星齿轮系系统 (C-PGTS) 集成动态平衡系统 (DBS) 并完全通过 AM 实现的单自由度 (DoF) 指向系统 (PS) 的可行性。我们详细分析了系统的动力学,涉及原型的设计和实现。对于本文而言,至关重要的是精心选择适合太空恶劣条件的 AM 材料。通过比较实验部分和模拟结果,我们强调了 PS 的正确尺寸以及 DBS 在维持卫星姿态方面的重要性。结果还证实了 AM 在生产复杂机械系统方面的能力,该系统具有高精度、有趣的机械性能和低重量。这表明 AM 在空间领域具有潜力,既可用于结构部件,也可用于本文中列出的有源部件。
摘要:增材制造 (AM) 在航天领域的应用日益广泛,这促使我们研究了通过复合行星齿轮系系统 (C-PGTS) 集成动态平衡系统 (DBS) 并完全通过 AM 实现的单自由度 (DoF) 指向系统 (PS) 的可行性。我们详细分析了系统的动力学,涉及原型的设计和实现。对于本文而言,至关重要的是精心选择适合太空恶劣条件的 AM 材料。通过比较实验部分和模拟结果,我们强调了 PS 的正确尺寸以及 DBS 在维持卫星姿态方面的重要性。结果还证实了 AM 在生产复杂机械系统方面的能力,该系统具有高精度、有趣的机械性能和低重量。这表明 AM 在空间领域具有潜力,既可用于结构部件,也可用于本文中列出的有源部件。
低地球轨道被动热涂层观测站 (PATCOOL) 立方体卫星是由 NASA 资助的在轨实验,由佛罗里达大学先进自主多航天器实验室开发和领导。立方体卫星任务旨在研究使用一种名为“Solar White”的低温选择性表面涂层的可行性,以此实现深空部件的更高效的被动冷却。在地面实验中,这项新技术已经证明它比任何现有的热涂层或涂料都能提供更高的太阳辐射反射率,而 PATCOOL 立方体卫星将验证这项技术。PATCOOL 的热设计是任务成功的最重要方面。PATCOOL 有效载荷包含一个可容纳四个样品的外壳,其中两个样品涂有“Solar White”,另外两个样品涂有最先进的白色热控制涂层:AZ-93。本文讨论了使用行业标准热建模软件 Thermal Desktop® 构建热模型的过程以及 PATCOOL CubeSat 的热分析结果。热分析旨在研究 PATCOOL 有效载荷的稳态温度响应并确定热流源。内部和外部热模型的 PATCOOL 热分析结果表明,低温选择性表面涂层的性能远高于目前最先进的热涂料,从而验证了 PATCOOL 热控制设计的有效性。
摘要。本文讨论了立方体卫星小型航天器的电源组织。研究了立方体卫星机载设备的各种电源供应方法。提出了使用太阳能电池板 (SP) 为立方体卫星供电的方法。展示了用太阳能电池板生产所需尺寸的太阳能电池阵列的开发技术。考虑了太阳能电池板的输入控制组织,以提高可靠性并实现所生产太阳能电池板的最大效率。介绍了一种用于诊断太阳能电池的开发支架,可以检测潜在缺陷。讨论了确定所开发的太阳能电池板的功率特性以及实现其最大效率所需的最佳负载的问题。描述了在立方体卫星飞行器上安装太阳能电池板的方法。通过在平流层探测器上发射立方体卫星,在太空中测试太阳能电池板的效率。收集并处理了实验中获得的飞行器电流供应和太阳能电池板电流产生的参数,结果以图表的形式呈现在文章中。根据获得的数据,展示了在立方体卫星型小型飞机上使用太阳能电池板的有效性。