自适应网状修复基于基本要素:后验估计。在中子中,后验错误控制是一个正在进行的研究主题。AMR。在[16,第3.3节]中,作者解决了A后验估计中使用的规律性假设的问题。在[21,22,25]中,A后验估计值基于双重加权残差方法,其中保证的估计器涉及确切的伴随溶液。在[17]中,他们设计了一个可靠的估计,该估计依赖于双重问题的定义,并突出了由于这个双重问题缺乏稳定性而缺乏效率。严格的估计值不需要过剩的规律性以及适应性网格重新确定策略,以解决运输方程式上的源问题[9]。在这项工作之后,[10]中已经解决了有关特征值问题的理论方面。在这些论文中,作者设计了一种数值策略,该策略依赖于精确控制的操作员评估,例如在[9]中用于解决源问题。在反应堆核心尺度上,使用简化的模型在核工业中很常见。准确地说,简化的模型可以是中子分歧模型或简化的传输模型。在[7]中,我们对中子差异方程的混合有限元离散量进行了严格的后验误差估计,并提出了一种自适应网格重新填充策略,以保留Carte-sian结构。在[13]中执行了这种方法对临界问题的第一个应用,尽管具有次级估计器。关于工业环境和特定的数字模拟,我们的方法是在Apollo3®代码[23]中开发混合有限元求解器[4]的一部分。
哲学中的心灵概念涵盖了多种理论和观点,研究其非物质性质、单一功能、自我活动、自我意识以及尽管身体发生变化但仍能持续存在。本文探讨了心灵的属性,讨论了古典唯物主义、二元论和行为主义,以及功能主义和计算功能主义等当代理论。主要的哲学争论包括身心问题、心理状态的主观性以及理解其他心灵的认识论和概念挑战。本文分析了亚里士多德、笛卡尔、维特根斯坦以及 UT Place、Gilbert Ryle 和 Hilary Putnam 等现代哲学家的对比观点。本文还讨论了这些理论对我们理解心理现象、意识和人类经验本质的影响。
在轨操作(例如维修和组装)被视为未来航天工业的优先事项。模拟在轨相互作用的地面设施是开发和测试太空技术的关键工具。本文介绍了一种使用地面机器人操纵器模拟在轨操作的控制框架。它将用于机器人操纵器笛卡尔运动控制的虚拟正向动力学模型 (VFDM) 与基于 Clohessy Wiltshire (CW) 模型的轨道动力学模拟器 (ODS) 相结合。众所周知,基于 VFDM 的逆运动学 (IK) 解算器比传统 IK 解算器具有更好的运动跟踪、路径精度和解算器收敛性。因此,它为基于轨道模拟的操纵器提供了稳定的笛卡尔运动,即使在奇异或接近奇异的配置下也是如此。该框架在 SnT 的 ZeroG-Lab 机器人设施上通过模拟两种场景进行了测试:自由浮动卫星运动和自由浮动相互作用(碰撞)。结果显示,ODS 指挥的模拟运动与机器人安装的模型执行的运动之间存在保真度。
量子化学中的传统方法依赖于基于 Hartree-Fock 的斯莱特行列式 (SD) 表示,其底层零阶图像假设粒子可分离。在这里,我们探索一种完全不同的方法,该方法基于笛卡尔分量可分离性,而不是粒子可分离性 [J. Chem. Phys.,2018,148,104101]。该方法似乎非常适合基于 3D 网格的量子化学方法,因此也适用于所谓的“首次量化”量子计算。我们首先概述了在经典计算机上实现的该方法,包括证明性能声明的数值结果。特别是,我们用四个显式电子执行数值计算,这相当于全 CI 矩阵对角化,具有近 10 15 SD。然后,我们提出了一种量子计算机的实现,与其他用于实现首次量化的“量子计算化学”(QCC)的量子电路相比,量子门的数量(在较小程度上,量子比特的数量)可以显著减少。
3D 电缆式笛卡尔计量系统 Robert L. Williams II 俄亥俄大学 俄亥俄州雅典 James S. Albus 和 Roger V. Bostelman NIST 马里兰州盖瑟斯堡 提交给:《机器人系统杂志》 2003 年 5 月 关键词:计量、电缆式计量、电缆、电线、拉线电位器、快速成型、机器人技术、自动化构造。 联系信息: Robert L. Williams II 副教授 机械工程系 257 Stocker Center 俄亥俄大学 俄亥俄州雅典 45701-2979 电话:(740) 593-1096 传真:(740) 593-0476 电子邮件:williar4@ohio.edu URL:http://www.ent.ohiou.edu/~bobw