攻击树是对安全性决策,支持网络攻击的识别,文档和分析的流行方法。它们是许多系统工程框架的一部分,例如umlSec [1]和sysmlsec [2],并得到了工业工具(例如Isograph's Attacktree [3])的支持。攻击树(AT)是系统图的层次图,以绘制系统的潜在攻击方案,请参见图。1和2。该图顶部的根部对攻击者的目标进行了建模,该目标通过门进一步将其重新定义为子目标:AN和GATE表示,如果所有儿童攻击成功,则攻击成功;一个或门表示任何单个儿童舒服。树的叶子是基本的攻击步骤(BAS),它模型不可分割的动作,例如切线。
Last but not least, the project will bridge the gap between hardware and software models by investigating mapping strategies targeting the following design constraints: (a) co-design and co-optimization with the underlying routing mechanism, so that smart mappings can allow more lightweight multicast hardware, (b) co-optimizing the SNN partitioning step with the placement one for efficient mapping of large scale SNNs to highly-parallel神经形态硬件。
Cryptonext安全使组织能够无缝地将其产品,系统和IT/OT基础架构从加密发现转变为加密网络安全,从而确保对量子威胁的长期弹性。它的解决方案还有助于预测并减轻密码随着时间的流逝。CryptoNext Security's offerings are segmented into three areas to support organizations in their transition to quantum-resilient cybersecurity: evaluation to measure the impact of PQC on applications and infrastructures while gaining expertise, inventory of cryptographic assets to set migration priorities and implement agile crypto management, and embedded solutions to integrate PQC into applications and systems.
iMeta 期刊 ( 影响因子 23.8 ) 由宏科学、千名华人科学家和威立出版,主编刘双江和傅静远教授。目标为生物 医学国际综合顶刊群 ( 对标 Nature/Cell) ,任何领域高影响力的研究、方法和综述均欢迎投稿,重点关注生物 技术、生信和微生物组等前沿交叉学科,已被 SCIE 、 PubMed 等收录,位列全球 SCI 期刊前千分之五,微生 物学研究类期刊全球第一;外审平均 21 天,投稿至发表中位数 57 天。 子刊 iMetaOmics ( 主编赵方庆和于君教授 ) 、 iMetaMed 定位 IF>10 的综合、医学期刊,欢迎投稿!
Amaka,年轻的黑客和DeepMask专家是Kai-Fu Lee和Chen Qiufan的众神的虚构人物。这个故事发生在湖泊中 - 被称为“非洲西部硅谷”,这是一种包裹在未来派和反乌托邦场景中的巨大,面部识别摄像头会自动收取公共交通率[1],清洁机器人在街道上流通,人们可以与户外互动。为了避免征收关税的支付,最重要的是,阿马卡戴上了3D面具,以绕过识别算法的识别算法,这使湖泊成为一个泛滥的物种,使米歇尔·福考(Michel Foucault)的世界融合了米歇尔·福考(Michel Foucault(Watch and Punish))和乔治·奥威尔(George Orwell)(1984年),并在数字生态系统中脱颖而出。
财务时间序列是高度非线性的,它们的运动是不可预测的。人工神经网络(ANN)在财务预测中有足够的应用。ANN模型的性能主要取决于其培训。尽管基于梯度下降的方法对于ANN训练很常见,但它们有几个局限性。烟花算法(FWA)是一种最近开发的元疗法,它受到夜间烟花爆炸现象的启发,它提出了诸如更快的融合,并行性和找到全球最佳优势之类的特征。本章打算开发一个由FWA和ANN(FWANN)组成的混合模型,用于预测收盘价系列,交换系列和原油价格时间序列。将FWANN的适当性与基于PSO的ANN,GA-基于ANN,基于DE的ANN和MLP模型等模型进行了比较。四个性能指标,MAPE,NMSE,ARV和R2被视为评估的晴雨表。进行性能分析以显示FWANN的适用性和优越性。
机器学习(ML)见证了医疗领域内的显着意义,这主要是由于与健康相关数据的可用性增加以及ML算法的逐步增强。因此,可以利用ML来制定有助于疾病诊断,预测疾病进展,量身定制治疗以满足个人患者需求并提高医疗保健系统的运营效率的预测模型。及时检测疾病有助于有效的症状管理,并保证提供适当的治疗方法。在多发性硬化症(MS)中,诱发电位(EPS)与扩大的残疾状态量表(EDSS)有很强的相关性,这表明其潜力是残疾进展的可靠预测指标。本研究的目的是应用人工智能(AI)技术来识别与残疾指数(EDSS)评估的MS进展相关的预测因素。必须阐明EP在MS预后中的作用。我们对从125个记录组成的医学数据库获得的经验数据进行了分析。我们的主要目标是构建能够通过应用高级知识挖掘算法来预测EDSS索引的专家AI系统。我们开发了智能系统,可以预测使用ML算法,特别是决策树和神经网络的MS的进展。中,获得的精度分别为88.9%,92.9%和88.2%,可与获得88.2%,96.0%和85.0%精度的MRI相当。可以将EPS确定为MS的预测指标,其功效类似于MRI发现。对于验证EPS是必要的,该EPS明显低于MRI,并且比MRI更便宜,并且更简单,与成像或生化方法同样有效,可作为MS的生物标志物发挥作用。
iii。建模和分析用户模块1。generatersakeys():此功能启动生成RSA键对的过程。b。它将调用KeyGenerationModule生成公共和私钥。c。它将处理在密钥生成过程中可能发生的任何错误,例如随机性不足或无效的关键参数。2。filepath():此功能提示用户输入需要加密的FilePath。b。它将验证输入以确保其处于预期格式并处理任何无效输入。3。Encrypt():此功能将:1。使用生成的公共密钥调用加密模块加密授权。2。调用DataTransmissionlayer将网络通过网络传输加密的密文将其传输到接收器。4。解密():此功能将:1。从网络接收加密的密文。2。使用私钥调用解密模块以解密密码。3。向用户输出解密的明文。
