13. 摘要 本手册旨在扩展并提供有关在交通运营环境中使用的系统和相关资产管理的一般信息和指导,以支持 FTA 交通资产管理 (TAM) 规则。它提供了一个框架,概述了系统理论概念并定义了特定类别和类型的交通系统,以促进交通系统资产管理实践的一致性。提供实用信息以帮助交通运营商清点系统资产并确定整个系统生命周期中所需的活动和投资,以从系统中获得最大价值。本手册及其任何建议都不是 FTA 要求;但是,该文件澄清了相关的现有 FTA 国家交通数据库 (NTD) 资产清单模块 (AIM) 报告要求,并指出了 FTA 法规与本文讨论的资产管理实践相交的地方。
3.3.10. 演习规划 ................................................................................................................ 3-75 3.3.11. 演习文件 ................................................................................................................ 3-82 3.3.12. 紧急情况后评估 ............................................................................................................ 3-91 3.3.13. 演习目标 ................................................................................................................ 3-92 3.3.14. 演习准备 ................................................................................................................ 3-94 3.3.15. 演习实施 ................................................................................................................ 3-96 3.3.16. 演习评估 ................................................................................................................ 3-100 3.3.17. 后续活动 ................................................................................................................ 3-107
摘要 — 本文介绍了一种基于网络的仿真模型,该模型的开发目的是评估 APACHE 项目(SESAR 探索性研究项目)中未来空中交通管理系统的新安全性能指标。该模型是 APACHE 系统的一部分——一个由模拟、优化和性能评估工具组成的平台。开发的模型包含三个模块:分离违规检测模块、TCAS 激活模块和冲突风险评估模块。模型应用通过四种场景说明:一个参考场景和三个解决方案场景(每个场景都涉及应用某种 SESAR 解决方案)。使用了三个交通需求级别,每个级别都包含 24 小时内穿越 FABEC 空域的计划飞行轨迹。模拟结果显示了计算某些安全性能指标的能力,并为交通和空域规划者提供了有价值的安全反馈。此外,还评估了不同 SESAR 解决方案的好处。
表格列表 ................................................................................................................................................vii
充电时,电池会承受较大的压力,从而进一步减弱直至最终失效,导致电池早期故障。BMS 可以使用三种电池平衡策略中的一种:电池平衡、被动平衡或电荷分流法,以均衡电池并防止单个电池过度受压,同时考虑电池的生命周期。在主动电池平衡期间,电荷从较健康的电池转移到较弱的电池。被动平衡使用耗散方法来识别电池组充电最高的电池,这些电池由较高的电池电压发出信号。一旦电压或电荷等于弱电池上的电压,多余的能量就会通过旁路电阻器释放。
Amrutvahini Polytechnic,Sangamner,Maharashtra,印度摘要:本文着重于电动汽车和固定应用的电池管理系统(BMS)的硬件方面。目的是对最新系统中现有概念进行概述,并使读者能够估算为给定应用程序设计BMS时必须考虑的内容。对一般要求进行了简短的分析后,检查了一些电池组的拓扑及其对BMS复杂性的后果。显示了从市售电动汽车中取出的四个电池组作为示例。以后,有关测量所需物理变量(电压,电流,温度等)的实施方面以及平衡问题和策略。最后,研究了安全考虑和可靠性方面。
摘要。电池是电能的存储介质之一,其开发非常重要。电池的使用没有监控,将损坏电池本身,例如迅速加热的电池,泄漏和气泡。目前,有很多电池管理系统可作为电池监控和控制模块可用,以避免过度充电,过度发电和过电流,从而有可能损害电池质量。在本文中,对电池管理系统(BMS)作为监视和控制模块进行了测试。测试在BMS 1s,2s和3s系列上进行了Li-ion 18650 2200mAh 3.7 V电池类型。BMS控制测试的结果表明,过度充电和过度收费保护功能可以很好地工作。虽然监视每个BM的过度充电的截止值的结果为3.7 V,7.2 V和11.1 V.每个BMS的过度递送保护的截止值为3.23 V,6.1 V,9.23 V和9.23 V.
1旁遮普邦技术大学电气工程技术系,拉合尔54770,巴基斯坦; abdul.muqeet@ptut.edu.pk 2苏克尔IBA大学电气工程系,巴基斯坦Sukkur 65200; Mudassir.munir@iba-suk.edu.pk 3穆罕默德·纳瓦兹·谢里夫·谢里夫(Muhammad Nawaz Sharif)工程系电气工程系,巴基斯坦穆尔坦60000; haseebjaved1996@yahoo.com(H.J.); shahzadpansota@hotmail.com(M.S.)4 奥尔堡大学,丹麦9220 Aalborg East; joz@et.aau.dk *通信:mjamil@mun.ca奥尔堡大学,丹麦9220 Aalborg East; joz@et.aau.dk *通信:mjamil@mun.ca奥尔堡大学,丹麦9220 Aalborg East; joz@et.aau.dk *通信:mjamil@mun.ca奥尔堡大学,丹麦9220 Aalborg East; joz@et.aau.dk *通信:mjamil@mun.ca奥尔堡大学,丹麦9220 Aalborg East; joz@et.aau.dk *通信:mjamil@mun.ca奥尔堡大学,丹麦9220 Aalborg East; joz@et.aau.dk *通信:mjamil@mun.ca
情况 COVID-19 疫情颠覆了日常生活的方方面面。几个月来,CDC 不知疲倦地努力抗击病毒的传播,同时也致力于开发疫苗解决方案以保护公众。在第一批 COVID-19 疫苗获批后,迫切需要建立一个有效的系统来安排疫苗接种预约、在多个地点接种疫苗,并跟踪需要第二剂疫苗接种的患者以进行全面接种。