肝细胞癌(HCC)是一种具有挑战性的恶性肿瘤,除了手术和化学疗法以外,治疗方案有限。靶向疗法和免疫疗法的最新进展,包括PD-1和PD-L1单克隆抗体,已显示出希望,但其效率尚未达到预期。基于基因突变和其他生物标志物的生物标志物测试和个性化医学代表了HCC治疗的未来方向。为了应对这些挑战和机遇,这项全面的审查讨论了针对HCC的有针对性疗法和免疫疗法的进展,重点是剖析结合这些方式的理由,机遇和挑战。肝脏的独特生理学和许多HCC患者的纤维化存在对药物递送和效率提出了额外的挑战。在生物标志物开发和组合疗法设计方面的持续努力,尤其是在免疫疗法的背景下,有望改善高级HCC的结果。通过探索生物标志物和有针对性疗法的进步,本综述提供了对领域中挑战和机遇的见解,并提出了理性组合疗法设计的策略。
太阳能太阳能电池板也称为模块,它包含由硅制成的光伏电池,可将入射的阳光转化为电能。(“光伏”基本上是从光中产生的电能——photo = 光,voltaic = 电。)太阳能光伏电池由放置在薄玻璃片下的正极和负极硅膜制成。当阳光的光子照射到硅电池上时,电子会从薄膜中弹出。带负电的电子被吸引到硅电池的一侧,这会产生可以收集和引导的电压。太阳能光伏阵列是通过连接不同的太阳能电池板来收集电流而形成的。熔断阵列组合器是一个电气箱,其中终止了多串太阳能光伏阵列电缆;这取决于安装的大小
随着对乳酸化研究的不断深入,蛋白质乳酸化修饰 越来越受到研究者的关注。而乳酸生成及代谢异常、基 因表达、修饰串扰等因素影响着乳酸化修饰动态平衡过 程。乳酸化修饰不仅在正常的细胞活动中发挥重要作用, 也参与调控年龄相关性疾病的发病机制。组蛋白乳酸化 主要通过调节相关基因的转录和表达来影响细胞的功能 状态,非组蛋白乳酸化则可以通过促进EndoMT,激活 信号通路,亚细胞定位和翻译后修饰串扰等功能,导致 年龄相关性疾病的发生和发展。然而,乳酸化修饰的调 控机制的研究尚且处于起步阶段,仍有许多未知功能和 新的修饰酶有待进一步探索,目前这些研究有助于揭示 乳酸化修饰的分布和调控机制以及在多种年龄相关性疾 病中的作用效果,并以此为依据转化为可应用于临床治 疗的手段是亟待解决的问题 。
高维光子态 (qudits) 对于提高量子通信的信息容量、噪声鲁棒性和数据速率至关重要。时间箱纠缠量子位元是通过光纤网络实现高维量子通信的有希望的候选者,其处理速率接近传统电信的速率。然而,它们的使用受到相位不稳定性、时间不准确性以及时间箱处理所需的干涉方案的低可扩展性的阻碍。同样,增加每个光子状态的时间箱数量通常需要降低系统的重复率,进而影响有效量子位元速率。在这里,我们展示了一个光纤尾纤集成光子平台,该平台能够通过片上干涉系统在电信 C 波段生成和处理皮秒间隔的时间箱纠缠量子位元。我们通过实验演示了具有时间纠缠量子的 Bennett-Brassard-Mermin 1992 量子密钥分发协议,并通过展示维度缩放而不牺牲重复率,将其扩展到 60 公里长的光纤链路。我们的方法能够以标准电信通信的典型处理速度(10 GHz 的 GHz 速度)操纵时间纠缠量子,并且每个单频信道具有高量子信息容量,这代表着朝着在标准多用户光纤网络中高效实现高数据速率量子通信迈出了重要一步。
肿瘤抑制和致癌信号通路之间的整合控制着癌细胞的各种细胞活动,包括细胞生长和凋亡。致癌基因的激活促进了癌症进展和逃逸机制,而肿瘤抑制因子则调节和抵消了致癌信号的负面影响。值得注意的是,磷酸酶和张力蛋白同源物 (PTEN) 是肿瘤抑制基因的重要家族成员之一,在调节肿瘤细胞的活动中起着关键作用。因此,PTEN 的受损、突变或缺失与癌症患者的低存活率或高肿瘤复发率有关。重要的是,G 蛋白偶联血小板活化因子受体 (PAFR) 的肿瘤高表达与肿瘤进展增加以及非小细胞肺癌 (NSCLC) 等恶性肿瘤的总体存活率下降和预后不良有关。类似地,在各种人类恶性肿瘤中检测到表皮生长因子受体 (EGFR) 信号的过度激活或突变,并且与预后不良有关。当前小型评论的目标是强调 PTEN 和 PAFR 以及 PAFR 和 EGFR 通路之间的机制见解在影响实验模型系统中的癌症生长和/或治疗剂的功效方面的重要性。
摘要肿瘤的存在可以系统地改变宿主免疫。一个部位中的免疫肿瘤相互作用可能会通过循环影响远端组织中的局部免疫微环境,因此影响免疫疗法对远处转移的疗效。在转移性环境中,在免疫疗法治疗期间对免疫肿瘤相互作用的了解可以增强当前免疫疗法的疗效。在这里,我们研究了67nr鼠乳腺肿瘤对αPD-1/αctla4和trimab(αdr5,α4-1Bb,αCD40)的反应,该反应同时在乳腺癌脂肪垫(MFP)中同时生长,并在肺部(MFP)和肺部(与乳腺癌转移的常见部位)与肿瘤的肺部相比,与肿瘤中的乳腺癌相比。分离出的肺肿瘤对两种疗法都有抗性。然而,在MFP和肺肿瘤轴承小鼠中,MFP肿瘤的存在可能会增加肺部肿瘤对免疫疗法的反应并减少肺转移的数量,从而完全消除一部分小鼠肺部肿瘤。MFP肿瘤对肺转移酶的影响是由CD8 + T细胞介导的,因为CD8 + T细胞的耗竭消除了肺转移的差异。此外,具有MFP和肺肿瘤的小鼠具有肿瘤特异性,效应子CD8 + T细胞的增加。因此,我们提出了一个模型,其中免疫原性的肿瘤可以引起全身性抗肿瘤CD8 + T细胞反应,该反应可用于靶向转移性肿瘤。这些结果强调了临床考虑原发性和转移性肿瘤之间对癌症对癌症的有效免疫疗法的要求,原本可以抵抗免疫疗法。
摘要:现场剂量测定(主动、被动剂量计)通过直接在现场确定环境剂量率来提供高精度。被动剂量计,例如 α-Al 2 O 3 :C,对于需要最小干扰的场地(例如考古遗址)特别有用。在这里,我们提出了一种使用 α-Al 2 O 3 :C 芯片获取环境宇宙剂量率和 γ 剂量率的综合方法。我们的程序包括(1)自制现场容器、(2)自制漂白箱、(3)快速测量序列和(4)基于 R 的软件来处理测量结果。我们的验证步骤包括可重复性、辐照时间校正、串扰评估和源校准。我们进一步模拟了容器对无限基质剂量率的影响,导致衰减约6%。我们的测量设计使用配备绿色 LED 的 lexsyg SMART 发光读取器。辐照是在封闭的 β 源下进行的。可以确定的最小剂量估计为约10 µGy。但是,我们还表明,对于所使用的设备,需要约2.6 秒的辐照时间校正,并且应考虑辐照串扰。建议的程序与克莱蒙费朗的四个参考地点进行了交叉检查,结果显示四个地点中有三个具有良好的 γ 剂量率。最后,介绍了一个应用示例,包括所需的分析步骤,用于埋藏在 Sierra de Atapuerca(西班牙)考古遗址的剂量计。关键词:α-Al 2 O 3 :C、剂量测定、发光、R. 1.介绍
用于光子量子比特的长持续时间量子存储器是实现长距离量子网络和中继器的重要组成部分。将光学状态映射到稀土集合中的相干自旋波上是一种特别有前途的量子存储方法。然而,由于所需的自旋波操纵引起的读出噪声,在量子水平上实现长时间存储仍然具有挑战性。在这项工作中,我们应用动态解耦技术和小磁场,在 151 Eu 3 +:Y 2 SiO 5 晶体中实现 20、50 和 100 毫秒的六种时间模式的存储,基于原子频率梳存储器,其中每个时间模式平均包含大约一个光子。通过存储两个时间箱量子比特 20 毫秒来验证存储器的量子相干性,平均存储器输出保真度为 F = (85 ± 2)%,每个量子比特的平均光子数为 μ in = 0.92 ± 0.04。量子比特分析是在存储器读出时完成的,使用我们开发的一种复合绝热读出脉冲。
摘要 我们最近认识到植物中多种 RNA 类经历动态共价化学修饰(或表观转录组标记),这为基因表达调控的潜在分子机制提供了新的见解。相比之下,由 DNA 和组蛋白的可遗传修饰组成的表观遗传标记已在植物中得到广泛研究,它们对植物基因表达的影响已得到充分证实。基于我们对植物表观转录组和表观基因组的不断增长的了解,探索这两个调控层如何相互融合以复杂地确定关键生物过程(例如发育和对压力的反应)背后的基因表达水平是合乎逻辑的。在此,我们重点关注植物表观转录组与涉及 DNA 修饰、组蛋白修饰和非编码 RNA 的表观遗传调控之间串扰的新证据。
摘要:串扰是量子计算设备的主要噪声源。量子计算中多条指令的并行执行会产生串扰,串扰会引起信号线间的耦合以及信号线间的互感、互容,破坏量子态,导致程序无法正确执行。克服串扰是量子纠错和大规模容错量子计算的关键前提。本文提出了一种基于多指令交换规则和持续时间的量子计算机串扰抑制方法。首先,针对量子计算设备上可执行的大多数量子门,提出一种多指令交换规则。多指令交换规则对量子电路中的量子门进行重新排序,将量子电路中串扰较大的双量子门分离。然后,根据不同量子门的持续时间插入时间赌注,在量子计算设备执行量子电路的过程中小心地分离串扰较大的量子门,以降低串扰对电路保真度的影响。多个基准实验验证了所提方法的有效性。与以前的技术相比,所提出的方法平均提高了15.97%的保真度。