第2级技术职业教师教育学士学位助理教授摘要:Balimbing(Averrhoa carambola)水果以其独特的星形和金色覆盖范围而闻名。果实在成熟过程中的组成差异很大。因此,这项研究旨在开发粉碎的巴利林(A. carambola)作为有效的食物增强剂。这项研究还确定了在不同的成熟度(未成熟和成熟)下粉碎的carambola水果酸味香料的酸水平。植物化学筛选是在巴利林(A. carambola)果实中进行的,以确定其化学成分,继发代谢产物和毒性。该研究利用了一种描述性研究方法。这种设计被认为是适当的,因为在这项研究中,研究人员可以建立一个实验,以确定粉碎的A. carambola的pH值水平在不同的成熟度水平,成熟和未成熟的情况下。进行了实验,以确定粉碎的粉状的定量和定性特征。设置由两个成熟度组成:未熟和成熟。每个成熟度级别具有三个重复。每个复制均包含20克的质量。评估了所有重复的定量特征,例如pH水平。的发现表明,A. carambola果实的pH值在其成熟度方面有所不同,成熟的绿色水果(未成熟)和成熟的A. carambola水果的平均pH值分别为pH。发现,发达的A. carambola食品增强剂在质地,外观和风味/味道方面表现出非常可接受的结果。同时将其香气描述为可接受的。此外,A. carambola的水分,条带和pH值在0.01显着性水平上相对于其成熟度(成熟和未成熟)的显着差异。关键字:粉碎的粉状,食品增强剂,开发,菲律宾I.介绍不同的工业创新,例如在食品制造行业中,以及人们创造由当地资源制造的新产品的性质,研究人员决心创建一种由当地发现的水果制成的潜在食品增强剂,该产品是本地发现的,是该地区的本地。balimbing(averrhoa carambola),通常称为星级水果,是一种坚固的椭圆形的热带水果,带有类似于星星的山脊。原始的Balimbing的颜色是绿色的,但成熟后最终会变成深黄色。它产生的味道是甜酸的混合物。Johnson和Peterson和Hartwig and McDaniel(2010)进行的研究表明,酸味的化学作用似乎相对简单,因为它仅与酸相关。酸是在烘焙食品,饮料,糖果,明胶甜点,果酱,果冻,
虽然对低噪声,易于操作和网络[1]保持着巨大的希望,但有用的光子量子计算已被MILIONS制造的超出状态组件的需求[2-6]所取得了。在这里,我们引入了一个可制造的平台[7],用于带有光子的量子计算。我们将一组单一集成的基于硅光子的模块标记,以生成,操纵,网络和检测预示的光子量子量,表明具有99的双轨光子量子。98%±0。01%的状态预先预期和测量保真度,带有99的独立光子源之间的Hong-ou-mandel量子干扰。50%±0。可见度25%,两分融合与99。22%±0。12%的保真度,以及99的芯片到芯片量子。72%±0。04%的保真度,以光子检测为条件,不考虑损失。我们预览了一系列下一代技术,即低降低氮化硅波导和组件,以解决损失以及制造耐受性光子源,高效效率光子 - 单位分辨率的探测器,低溶质粉末 - 粉状粉末粉末的含量和滴定液滴定相位的较高的转换阶段。
摘要 - 本文提出了一种基于密度的拓扑处理方案,用于局部优化由损失的分散材料制成的纳米结构中的电力耗散。我们使用复杂偶联的杆子(CCPR)模型,该模型可以准确地对任何线性材料的分散剂进行建模,而无需将它们限制为特定的材料类别。基于CCPR模型,我们在任意分散介质中引入了对电力耗散的时间域度量。CCPR模型通过辅助微分方程(ADE)合并到时域中的麦克斯韦方程中,我们制定了基于梯度的拓扑优化问题,以优化在宽频谱上的耗散。为了估计目标函数梯度,我们使用伴随字段方法,并将伴随系统的离散化和集成到有限差分时间域(FDTD)框架中。使用拓扑优化球形纳米颗粒的示例,由金和硅制成,在可见的 - 粉状谱光谱范围内具有增强的吸收效率。在这种情况下,给出了与基于密度的方法相关的等离子材料拓扑优化的拓扑挑战的详细分析。我们的方法在分散媒体中提供了有效的宽带优化功率耗散的优化。
fi gu u r e 1加利福尼亚州土地覆盖构图,在过去的20年中,上面展示了巨型粉状。在这张地图中,土地覆盖物分为“针叶树”和“非核心”易火地覆盖类别。非核心土地覆盖物包括分组的“草地”,“硬木”和“灌木丛”土地覆盖类别。“ Urban”,“农业”和“沙漠”没有考虑进行分析,并未在地图中留下。Megafire周围(红色)定义为> 100,000英亩(n = 28),并从Calfire和Nifc数据库(2000-2020)获得。插图图(右上角)显示了迄今为止加利福尼亚州最大的纪录野火的8月复杂大火的烧伤图像。虽然被广泛认为是“森林大火”,但插图表明,八月的巨型群岛并非纯粹在针叶树中燃烧,而是构成了几种不同土地覆盖类型的混合物。南加州的Megafires主要在针叶树外燃烧,但对人们和基础设施构成了一些最大的威胁南加州的Megafires主要在针叶树外燃烧,但对人们和基础设施构成了一些最大的威胁
墙壁栖息地的多样性虽然大多数旧墙最初是由近距离可用的材料建造的,但一些来自不太直接来源的装饰性装饰石用于修饰教堂和修道院的窗户和门。中世纪的石材工程通常是由专家石泥工精确制作的。在爱尔兰中部地区的许多地方,用冰川作用四舍五入的石头被用来加强地球库,或者被原始形式的砂浆结合在一起。许多墙壁,主要在爱尔兰西部是自由站立的,干燥的建筑,对墙壁建造者的艺术持续致敬(例如,见图。1)。在其他地方,墙壁是由熟练的工匠形成的,使用了本地可用的基岩的特征,其技巧是由Quarlymen提供的立即可用石材的床上用品特征所带来的。石头和岩石是通过周到的设计的结合,并以各种形式的砂浆来固定在适当的位置,再次源自局部来源 - 粉状的石灰石或富含石灰的海壳。在某些情况下,石灰石砂浆用于用石灰石以外的石材建造的墙壁(例如花岗岩或砂岩),使爱好石灰的土著植物物种可以通过自然手段传播,超出其原始限制到酸橙贫困地区。
Majority of the regions in the country posted declines in their palay production, namely Central Visayas (-27.9 percent), Caraga (-11.9 percent), Bicol Region (-11.7 percent), SOCCSKSARGEN (-11.6 percent), CALABARZON (-9.4 percent), Davao Region (-7.7 percent), Zamboanga Peninsula (-7.0 percent), Western Visayas (-6.9%),东部米沙ya(-4.9%),米马罗帕(-2.9%)和棉兰老岛北部(-0.03%)。这些区域的负面性能是由于以下因素造成的:•由于中央米沙ya和达沃地区恶劣天气条件的不良影响以及灾难以及诸如Caraga的热带抑郁症和诸如Caraga的Typhoon Typhoon Tisoy和Ursula tiSoy和Ursula地区的灾难,以及灾难。 •连续的厄尔尼诺现象的不利影响,例如:(a)减少米沙ya,卡拉加山,卡拉巴宗,Zamboanga半岛,东部米沙yas和棉兰老岛的中部收获的地区; (b)Soccsksargen,Western Visayas和Mimaropa的供水和降雨不足; •由于BICOL和东部米沙ya的Palay农场门价格下降以及实施稻米粉状法,因此产量降低。
确保足够数量的高质量幼虫的可用性仍然是水产养殖阶段的重要瓶颈。在过去的一个世纪中,已经探索了各种幼虫阶段的替代饮食解决方案,包括细菌,微藻糊,酵母和各种惰性微粒,尽管结果不一致。本综述旨在讨论益生菌在微循环中的创新整合,突出显示封装,涂料和发酵技术以推动水产养殖生产率。微法经常富含营养且易于以粉状或液体形式吸收,在幼虫鱼营养中起着至关重要的作用。可以将这些分类为微封装,干燥,液体和活饲料。微鳍的选择是关键,可确保针对每个幼虫阶段量身定制的吸引力,消化率和水稳定性。由于益生菌在水产养殖中的潜力增强,增强疾病耐药性和提高水质的潜力,其给药方法已经多样化。益生菌可以通过直接浸入和浴处理对生物氟氟氯洛克系统和饲料添加剂进行管理。结果表明,与益生菌合并的微局面对水产养殖业有积极的影响。
限制脉冲潜在产量的主要限制因素包括除了社会经济因素以外的脉冲生长区域中普遍存在的生物和非生物应力。在生物胁迫中,与根腐病配合物相结合的镰刀菌可能是最广泛的疾病,除了干根腐烂和锁骨腐烂外,还会造成鹰嘴豆的巨大损失。虽然镰刀菌,无菌性摩西和植物疫病会导致鸽子,黄色马赛克,尾虫叶斑,粉状霉菌和叶片皱纹和叶片造成大量损失,并在Vigna作物(Mungbean和Urdbean)中造成了相当大的损害。在鹰嘴豆和鸽子中的革兰氏荚虫(Helicoverpa Armigera)中,岩豆和鸽子中的革兰氏pod虫,木豆中的豆荚在乌尔德比恩和蒙比e造成严重损害各自的作物的豆荚,粉丝,粉丝,jassids和thrips。bruchids是储存的脉冲晶粒中最严重的害虫,在管理中需要最高优先级。杂草也会大大损失脉冲。最近,线虫已成为许多地区成功种植脉冲的潜在威胁。
在本文中,我们在超薄的磁合金和多层上,在不透明的SI底物上应用桌面,超快,高谐波生成(HHG)来测量元素特异性铁磁共振(FMR)。我们证明了连续的波带宽高达62 GHz,并承诺将其扩展到100 GHz或更高。该实验室规模的仪器使用超快,极端粉状物(EUV)的光检测FMR,光子能量跨越了最相关的杂志元素的M-边缘。射频频率梳子发生器用于产生微波激发,该微波激发本质上同步与EUV脉冲,其正时抖动为1.1 ps或更高。我们应用该系统来测量多层系统以及Ni-FE和Co-FE合金中的动力学。由于该仪器以反射模式运行,因此它是测量和成像磁态动力学和主动设备在桌面上任意基板上的自旋传输的里程碑。较高的带宽还可以测量具有高磁各向异性的材料,以及纳米结构或纳米电视中的铁磁体,抗铁磁铁和短波长(高波形)自旋波。此外,EUV的相干性和短波长将能够使用动态纳米级无透镜成像技术(例如相干差异成像,Ptychography和全息图)扩展这些研究。
术语“微生物群”用来表示当前微生物的群落,并且十个等同于“微生物组”一词,尽管它们有明显差异1。微生物组是一个更广泛的术语,它基本上表示微生物,其基因和环境条件2。微生物是人体不同区域(消化系统,口腔,皮肤,肺和阴道菌群)的永久居民,其中消化道不仅被认为是殖民地最多的区域,不仅是约100万亿微生物,而且还可以维持人类健康1。取决于人类消化系统(胃,小肠或大肠)的片段,由于不同的条件,这些条件更紧密地由pH,过渡时间,氧气,氧气,酸,胆汁盐等的因素,微生物群的组成也有所不同。在大肠中发现了最高浓度的微生物,由于缺乏氧气,厌氧物种占主导地位。相比之下,具有较高氧气的小肠主要由兼辅助动氧3,4居住。在该领域的可用研究表明,肠道菌群的组成由细菌组成(粉状,细菌植物,蛋白质细菌,蛋白质细菌,肌动杆菌,绿核细菌和梭菌病),真菌(真菌)(真菌(Fungi Malassezia),病毒(噬菌体)和古细菌1还报道了包括