Meihua Fang 1 , Zheng liang 1 , Yingkui Gong 2* , Jianfei Chen 1 , Guiping Zhu 1 ,Ting Liu 2 , Yu tian 2 , Yu Zhou 2
现代加速器首选非侵入式测量方法来表征束流参数。电离轮廓监测器 (IPM) [1–3] 和束流诱导荧光监测器 (BIF) [4–8] 被广泛用作许多加速器中的非侵入式束流轮廓监测器。在此类监测器中,粒子束与残留气体相互作用,导致气体分子电离或发射荧光。束流与气体相互作用产生的副产物可以通过外部电磁场(离子和电子)收集,或使用独立光学系统(荧光)检测,以提供初级束流的一维分布信息。根据背景压力水平,它们通常需要较长的积分时间或加载额外的工作气体。后者将产生较大的压力凸起区域,并可能导致初级束流性能下降
摘要 光束动力推进是一种利用高能粒子束驱动航天器的空间推进系统。这项创新技术有望为未来的太空任务提供高比冲和高推力能力。光束动力推进的关键部件包括粒子加速器、传动系统和航天器推进装置。该系统通过产生和引导高能粒子束(例如电子或离子)朝向推进装置来运行。光束与推进装置的相互作用产生推力,推动航天器前进。光束动力推进具有多种优势,包括高比冲、高推力、低质量以及在各种空间环境中运行的能力。空间技术的快速进步提高了商业和私营部门的成功率,但推进技术难以克服霍曼效应。研究重点是用于深空任务的无碳电力和核技术。应对持续的挑战评论文章强调了太空探索和行星际运输的好处。关键词:光束动力推进、高能粒子、比冲、推力、粒子加速器、传动系统、航天器推进装置。
石墨烯材料对粒子辐射具有很强的抵抗力,这在带电粒子束实验中得到了证实 [4-6]。这一特性主要归因于石墨烯中缺乏块状晶体结构:这降低了粒子与样品碰撞的概率,并且在发生这种碰撞时不可能形成大量的原子位移级联,从而最大限度地减少了材料损坏的程度 [7]。此外,已经证明石墨烯对某些能量范围内的轻带电粒子束几乎是“透明的” [8, 9],这甚至可以在石墨烯的基础上开发用于在强力加速器中输出高能质子束的窗口 [10]。石墨烯对辐射具有高抵抗力的第二个原因是块状材料中不存在的辐射缺陷的“自修复”效应 [4]。在石墨烯中,它们首先通过热激活过程实现,即置换原子的重新排序,以及通过空位和纳米孔捕获吸附原子[11, 12]。
本报告包括 1973 年 10 月完成的合同主题的摘要和书目列表。主要主题是:激光技术、强爆炸的影响、地球科学、粒子束和材料科学。杂项相关项目部分作为可选主题包含在内;有关地磁脉动的材料将在单独的报告中摘录。
本报告包括 1973 年 10 月完成的合同主题的摘要和书目列表。主要主题包括:激光技术、强爆炸的影响、地球科学、粒子束和材料科学。有关其他感兴趣的项目的部分作为可选主题包括在内;有关地磁脉动的材料将在单独的报告中摘录。
粒子加速器物理与建模 II 2V 1U 加速器将被视为一个抽象的动态系统,我们将讨论非线性对带电粒子束动力学的影响。我们将介绍 Lie 方法与微分代数 (DA) 和截断幂级数 (TPS) 的结合。在第二部分中,我们将讨论使用神经网络和多项式混沌展开来构建此类非线性动态系统的替代模型。
课程概述:带电粒子动力学的审查;气排放基本面;离子源的分类;横向和纵向粒子束动力学;带有和没有空间充电的光束光学器件;离子源的提取系统;离子源的类型 - 签名电离量表(PIG),电子回旋谐振(ECR),真空弧,duoplasmatron,射频(RF)和snics离子源(通过cesium溅射的负离子来源);离子源的真空技术,离子源的光束诊断。
便于 TID 测试。主要优点是,与放射源(无需担心处理放射性物质)或粒子束(通常是重型装置,维护要求高)相比,使用 X 射线发生器更容易管理辐射安全问题。这是因为光子的能量相对较低,可以通过防护罩轻松阻止,而且 X 射线发生器可以轻松关闭。X 射线发生器的另一个优点是光子能量足够低,可以轻松准直。因此,可以使用 ARACOR 之类的 10 keV 发生器照射晶圆上的单个设备。与 60-Co 或铯 137 源相比,X 射线发生器还提供相对较高的剂量率,从而缩短了测试时间。在系统设计期间,这允许快速(一天内)对同一类型的多个组件进行 TID 灵敏度表征(筛选),以便获得 TID 硬度的初步估计值。最后,与放射源或粒子束相比,X 射线发生器的购买和维护成本更低。低能 X 射线发生器的主要缺点是光子穿透深度低,必须在晶圆级或无盖器件上进行辐射,而更高能量的辐射源对于封装器件或系统级(电子板)的辐射测试仍然是强制性的。其他缺点
• 分离扇区回旋加速器 (SSC) 实验室:利用粒子束推进我们对物质核心和恒星燃料的理解,以及辐射与生物系统的相互作用 • 串联加速器实验室:提供离子束分析技术,如 PIXE、ERDA 和 RBS,用于材料研究、材料工程和纳米科学 • 串联和加速器质谱 (TAMS) 实验室:提供用于离子束分析和加速器质谱的不同且互补的工具,作为多学科研究工具