1. 简介 在汽车行业,电气解决方案的高度集成是一大趋势 [1]。因此,行业面临着提供集成度更高、更可靠、更节能的设备的需求 [1-4]。这些设备应安装在汽车有限的空间内。这种内部空间限制以及不断增加的功率密度需要增强散热以在减小尺寸的同时提高性能 [2]。PCB 嵌入式技术是解决这些问题的绝佳解决方案。事实上,它通过优化互连、减小尺寸和重量以实现小型化来提高电源模块性能 [1, 5]。这种优化可降低寄生电感并获得更好的热管理 [1, 6, 7]。本文选择的一个应用示例是智能皮带驱动起动发电机。对于此应用,我们采用了 PCB 嵌入式技术。对于后一种情况,本研究涉及一种新电源模块概念的可行性,该概念包含四个 100 V Si MOSFET ST315N10F7D8,作为单个开关并联,高度集成在 48 V/400 A 电机中,一方面减小体积和重量,另一方面提高热管理和芯片粘接的机械强度。该技术基于将 Si MOSFET 集成到 PCB 内部,使用银浆烧结进行芯片粘接和预浸渍复合纤维层压。本文将重点描述更为坚固的组装工艺,随后对原型进行电气测试以展示其功能,而机械测试将展示其强度。2. PCB 嵌入式组装设计其原理是使用基于厚铜板的绝缘金属基板 (IMS) 来传输大电流并优化散热。芯片堆叠在两块铜板之间以便于嵌入。芯片和铜板之间的连接由银烧结工艺确保。电绝缘由层压在这些铜板之间的预浸渍复合纤维层实现(见图 1)。此外,芯片栅极烧结到铜箔上,并且可以通过镀通孔 (PTH) 访问该铜箔。
各种电子封装都在极其恶劣的环境下工作,这需要较长的使用寿命,对微电子界来说是一个重大挑战。200 o C 以上的工作温度加上高压、振动和潜在的腐蚀性环境意味着,在如此高温下工作的电子系统的开发中仍然存在一些技术问题。最近的高温应用技术已经出现,能够承受高达 300 o C 的高温。烧结银是极端环境下芯片粘接的潜在候选材料之一。本研究旨在通过研究烧结银材料,了解硅芯片粘接材料在恶劣环境下性能下降/失效的方式和原因。开发了一种常用于表示微电子封装组件的二维轴对称芯片粘接模型。FE 模型可以很好地理解不同引线框架材料、烧结银和芯片厚度的单一参数变化的影响。烧结银厚度对塑性应变的影响非常小。此外,在芯片方面,硅芯片和烧结银之间的局部热失配是最重要的负载因素。此外,较厚的芯片会在芯片中产生更高的应力。