大脑衰老是一个复杂的过程,涉及多种途径,包括从细胞到分子的各种成分。本研究旨在探讨斑马鱼大脑从青年到成年,以及从成年到老年过程中基因表达的变化。对从斑马鱼脑中分离的神经元细胞进行 RNA 测序。这些细胞富含祖细胞标记物,而这些标记物在整个衰老过程中会减少。我们发现了 176 个具有统计学意义的差异表达基因,并根据基因本体描述确定了一组基因,这些基因被归类为细胞粘附分子。在另一组斑马鱼大脑、健康人类和阿尔茨海默病大脑样本以及 Allen Brain Atlas 数据中进一步测试了这些基因的相关性。我们观察到,在衰老过程中,GJC2 和 ALCAM 这两个基因的表达变化在所有实验组中都是一致的。我们的发现为健康大脑老化提供了一组新的标记,并为神经退行性疾病的治疗方法提出了新的目标。2020 Elsevier Inc. 保留所有权利。
图 2. (a) 在未改性(深灰色图)和改性(浅灰色图)玻璃基板上通过 TPP-DLW 制造的聚合物立方体的剪切力测量。在这两种情况下,测试的立方体的边长均为 10 µm。水平虚线表示将微结构从基板上移开所需的最大力。插图显示了在边长为 30 µm 的立方体上进行的力-位移实验的光学显微镜图像。力传感器是图像右侧的明亮梯形结构。在未改性(b)和改性(c)基板上制造的 TPP 微结构的事后 SEM 图像。只有在改性基板上制造的微结构上才能清楚地看到由于与力传感器接触而产生的塑性变形迹象。(b)和(c)中的比例尺为 5 µm。
图1。锂离子电池示意图(来源:研究门)...............................................................................................................................................................................................................................................................................................................................................电池生产过程(来源:研究门).........................................................................................................................................................................................................................................................................................................................................................................................................................................................锂离子的能量密度(Park,2012)........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................Thick Electrode Schematic (Source: 24M) ................................................................... 14 Figure 5.Thick Electrode Transport Distance (Source: Research Gate) ...................................... 15 Figure 6.新颖的厚电极(来源:Kuang,2019).......................................................................................................................................................................................................................................................................................................................................................................................................Crack Formed Thick Electrode Schematic .................................................................... 16 Figure 8.厚电极中的机械分层(来源:Lee,2018年)............................................................................................................................................................................................................................................................................................................................................................................................................................................... 17图9。Preliminary Experiment: Cycle Test ............................................................................. 21 Figure 10.Preliminary Experiment: Rate Capability Test ............................................................ 21 Figure 11.Thinky ARV-310 Planetary Centrifugal Vacuum Mixer ............................................ 22 Figure 12.Slurry Coating Process ................................................................................................ 24 Figure 13.Doctor Blade (MTI Corp.) ........................................................................................... 24 Figure 14.基板:电压与Error 500 (Server Error)!!1500.That’s an error.There was an error. Please try again later.That’s all we know.粘合剂化学样品........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... 36图27。剥离测试示意图............................................................................................................................................................................................................................................................................................................................................................................................... 38图28。Tensile Strength machine and Test Set-Up ................................................................. 38 Figure 29.Sample Output from Peel Test .................................................................................... 40 Figure 31.果皮测试结果........................................................................................................................................................................................................................................................................................................................................................................... 41图32。Substrate: Discharge Capacity vs. C-Rate Graph ........................................................ 43 Figure 33.特定容量图................................................................................................................................................................... 44图34。Thickness: Discharge Capacity vs. C-Rate Graph ...................................................... 45 Figure 35.厚度:电压与Specific Capacity Graph ........................................................ 46 Figure 36.粘合剂:排放能力与C-rate图..................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... 47
未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者(此版本于 2020 年 4 月 8 日发布。;https://doi.org/10.1101/2020.04.07.029629 doi:bioRxiv preprint
1底物残基和底物结合位点的命名法是根据Schechter和Berger(1967)的说法。底物残基是从裂解位点指定为P1,P2,P3等的N末端,以及带有P1',p2',p3'等的C-末端。适当的底物绑定位点用S1,S2,S3等指定。或S1',s2',s3'等。
$%! ! & ' '(!)' * $+# % $+# , %! - . - * / ! & $0 (! 0 1! * % * ! +# , ! - ( (1 2 - $ - 3 4 5 % ' - & 6 & ( ' !!! ! * $ % +# , (1 ' ! +# , - " ! - * ' 7' & & * $0 ( % * $0 1 % 8 4 - & - & * 6 !& " !$&&'--'-%-&!4'-