除了常规的口腔卫生习惯外,抗菌漱口水通常用于预防细菌滋生和预防口腔微生物疾病。市售的漱口水主要含有氯己定、酒精和氟化钠等成分,这些成分具有抗菌特性。然而,它们的潜在副作用,如牙齿染色或味觉改变,促使人们需要既有效又副作用更少的新配方 [8,9]。到目前为止,还没有研究检查过氟化物漱口水中精氨酸对牙釉质再矿化的影响。因此,本研究旨在评估 L-精氨酸氟化物漱口水与氟化钠漱口水相比的再矿化潜力。这种方法可以潜在地改善治疗结果,同时保持氟化物在促进牙齿健康方面的益处。这项研究将分阶段进行,这是研究的第一阶段。
细菌精氨酸脱节酶系统(ADS)的抽象精氨酸分解代谢具有通过氨的生产来调节口腔环境的pH值。鉴于ADS途径的潜在保护能力,通过预或益生菌应用对ADS功能的口服微生物的开发是防止牙齿衰减的有前途的治疗靶标。迄今为止,大多数对口腔中的广告及其与龋齿的关系的研究集中在间接的活动或特定细菌群上,但是在口腔健康和疾病的多种混合微生物社区中,ADS操纵子的普遍性和表达率仍然是一个悬而未决的问题。在这里,我们使用多元方法,将超深的元文字测序与配对的metataxonomic和体外柑橘丁物定量相结合,以表征微生物群落和ADS操纵子在健康和晚期洞穴中的表达。虽然健康牙齿的ADS活性较高,但我们鉴定了多个细菌谱系,在熟牙上具有上调ADS活性的多个细菌谱系,这些谱系与使用基于参考的映射和从头组装方法的健康牙齿上的牙齿不同。我们的双重metataxonomic和metatranscriptomic方法证明了物种丰度对基因表达数据解释的重要性,并且差异表达的模式可以被低含量的群体偏斜。最后,我们确定了物种内的几种潜在候选益生菌细菌谱系,这些谱系可能是预防牙齿衰减的有用治疗靶标,并提出,鉴于此处确定的整个健康组所识别的分类群的异质性,鉴于菌株特异性,混合菌益生菌的发展可能是一种有益的方法。
生物压电材料因其作为环境友好型能量收集材料的巨大潜力而开始受到关注。特别是,简单的氨基酸和肽晶体组件在施加力的情况下表现出大的电压输出,并且在检测振动时具有高灵敏度。在这里,我们利用密度泛函理论 (DFT) 计算来定量预测两种研究不足的蛋白质氨基酸晶体的能量收集特性:L-精氨酸和 L-缬氨酸。这项工作强调了量子力学计算筛选晶体作为高性能能量收集器的能力,并展示了小生物晶体作为环境友好型压电材料的能力。预计 L-精氨酸的最大压电电压常数为 g ij 274 mV m/N,杨氏模量为 E 17.1 GPa。 L-缬氨酸的最大预测压电电压常数为g ij 62 mV m/N,计算的杨氏模量为E 19.8 GPa。
蛋白精氨酸甲基转移酶(PRMT)介导的精氨酸甲基化是一种重要的转录后修饰,可调节各种细胞过程,包括表观遗传基因调节,基因组稳定性,RNA代谢,应激反应性信号转移。已经广泛讨论了精氨酸甲基化和神经系统疾病中精氨酸甲基化的不同底物和生物学功能,这为针对PRMT的临床应用中的基本原理提供了理由。越来越多的研究表明精氨酸甲基化和病毒感染之间存在相互作用。PRMT已被发现甲基甲基化和调节几种宿主细胞蛋白和不同功能类型的病毒蛋白,例如病毒capsids,mRNA出口商,转录因子和潜伏期调节剂。这种调节会影响其活性,亚细胞定位,蛋白质 - 核酸和蛋白质 - 蛋白质相互作用,最终影响其在各种病毒相关过程中的作用。在这篇综述中,我们通过组蛋白和非源性的甲基化讨论了PRMT及其多效性生物学功能的分类,结构和调节。此外,我们总结了PRMT底物的广泛范围,并探讨了它们对各种病毒感染过程和抗病毒先天免疫的复杂作用。因此,理解精氨酸甲基化的调节为理解病毒疾病的发病机理和发现抗病毒药疗法的机会提供了关键的基础。
尽管精氨酸酶主要参与尿素循环的最后一个反应,但我们先前已经证明了精氨酸酶II是一种重要的胞质钙调节剂,以p32依赖性方式通过精子产生。在这里,我们证明了韵律素(RPT)是一种新型的药物精氨酸酶,并研究了其对Ca 2+依赖性内皮一氧化氮合酶(ENOS)激活的作用机理。rpt对小鼠肝脏和肾脏的精氨酸酶I和II均未抗拒抑制。它还抑制了主动脉和人脐静脉内皮细胞(HUVEC)中的精氨酸酶活性。使用显微镜和FACS分析,RPT处理使用Fluo-4 AM作为钙指标诱导胞质Ca 2+水平的增加。增加的胞质Ca 2+以时间依赖的方式引起了Camkii和Enos Ser1177的磷酸化。RPT孵育还增加了细胞内L-精氨酸(L-ARG)水平,并激活了HUVEC中的CAMKII/AMPK/AKT/ENOS信号级联。在WT小鼠的EC中,精氨酸酶抑制剂L-ARG和ABH,精氨酸酶抑制剂的治疗增加了细胞内Ca 2+浓度和活化的CaMKII依赖性eNOS激活,但是,在三磷酸三磷酸三磷酸酯受体1型敲除(IP3R1 - / - - / - - - - / - )小鼠中未观察到这些作用。在WT小鼠的主动脉内皮中,RPT还增强了一氧化氮(NO)的产生和减弱的活性氧(ROS)产生。在这项研究中,我们提出了RPT的新型机制,在使用RPT治疗的主动脉组织组织的血管张力测定中,增强对乙酰胆碱(ACH)的累积血管舒张反应,并且苯乙肾(PE)依赖性的血管结合性反应受阻,尽管弱化了硝基胺和KCL钠反应,但并非不同。
抽象糖尿病的特征是体内高血糖水平。1型糖尿病的治疗方法是胰岛素注射剂,而2型糖尿病的治疗通常使用口服药物。当前,人们正在寻找使用金属复杂化合物制成的糖尿病药物。Fe(III)复合化合物的研究和利用的开发仍然受到限制,因此,在这项研究中,进行了Fe(III)复合化合物与精氨酸配体的合成。研究的结果获得了96%的Fe(iii) - 精氨酸的复杂化合物,其样品重量为0.5601 g。使用UV-VIS分光光度计进行表征,在203 nm的波长下显示吸收,这表明Fe(III) - 精氨酸复合物的吸收。FTIR分析的结果表明,在500-600 nm的波长下,Fe -O和Fe -N键的典型吸收。当Alloxan诱导时,小鼠体重的计算结果减少。3周和4周后,老鼠的体重恢复到稳定性。葡萄糖水平的最高降低是剂量2,即100μg/kg bw,降低为66.72%。这项研究的结果表明,复杂的化合物Fe(III)精氨酸可以降低小鼠的血糖水平。关键词抗糖尿病活动,Fe(III)复合化合物,精氨酸配体,雄性小鼠
摘要一氧化氮是由L-精氨酸形成的,在调节血压,抑制血小板聚集和动脉粥样硬化的起源方面起着基本作用。大多数研究表明,补充L-精氨酸的有益作用与一氧化氮对细胞的生物利用度更大,改善内皮功能障碍,减少氧化应激,血脂异常和胰岛素抵抗。但是,一些研究表明结果矛盾。考虑到内皮在DCV和内分泌代谢疾病的疗法发生中的重要性,该修订将着重于描述分子生产机制及其信号通路在控制血管功能中。主要的结果还将在使用口服L-精氨酸补充或不运动的临床试验中解决,以促进对心血管和内分泌 - 代谢系统,患者和健康个体的有益影响。
方法:将血清饥饿的HDPSC分为四组:对照:DMEM中的HDPSC;基于L-精氨酸的300μmol/L中的HDPSC;基于L-精氨酸的400μmol/L中的HDPSC;在500μmol/L的基于L-精氨酸的培养基组中的HDPSC中,在两个单独的24孔板(5×10 4细胞/孔)中添加了增殖和迁移评估。24小时后,使用细胞计数测试(血液镜和手动检查器)测量所有组的增殖。通过使用细胞迁移测定法(刮擦伤口测定法),在24小时后使用细胞迁移测定法测量了所有组的迁移速度。在显微镜下评估细胞特征,然后使用Image-J®解释对其进行评估。此图像j表示迁移速度(NM/h)数据的测量。使用单向方差分析和事后Bonferroni(p <0.05)进行统计分析,以进行增殖,并在事后LSD(P <0.05)进行迁移。
非霍奇金淋巴瘤(NHL)是在淋巴组织中产生的一组血液癌,通常会影响人类和狗。蛋白精氨酸甲基转移酶5(PRMT5)是一种催化精氨酸残基的对称二甲基化的酶,在人类固体和血液系统恶性肿瘤中均过表达且失调。在人淋巴瘤中,PRMT5是已知的恶性转化和肿瘤发生的驱动因素,但是尚未探索PRMT5在犬淋巴瘤中的表达和作用。探索犬淋巴瘤是与人淋巴瘤的有用比较,同时将PRMT5作为两者中的有理治疗靶标的,我们表征了犬淋巴瘤组织,原发性淋巴样生物的PRMT5的表达模式,以及犬淋巴瘤衍生的细胞系。PRMT5的抑制导致了抑制和诱导凋亡,同时选择性降低了对称二甲基精氨酸(SDMA)(SDMA)和组蛋白H4精氨酸3对称二甲基化的全局标记。,我们通过途径富集分析进行了ATAC测序和基因表达微阵列,以表征全基因组可及性的全基因组变化和PRMT5抑制后犬淋巴瘤细胞系的全转录组变化。这项工作将PRMT5验证为犬淋巴瘤的有前途的治疗靶标,并支持继续使用自发发生的犬淋巴瘤模型,用于临床前PRMT5抑制剂治疗人类NHL。