三重军用防护箱,抗压、防水、吸能两块锂电池及充电器,PDA配件,防辐射罩配件万能充电器及车充,4张SD存储卡及读卡器可选配件:大电池,座式测试支架,蓝牙打印机,磨机,手动压机,不同目数的筛子
事件摄像机最近显示出对实用视觉任务的有益,例如行动识别,这要归功于其高度分辨率,功率效率和引起的隐私问题。然而,当前的研究是由1)处理事件的困难,因为它们的持续时间长时间和动态动作具有复杂而模棱两可的语义; 2)事件框架表示带有固定堆栈的冗余作用。我们发现语言自然传达了丰富的语义信息,从而使其在降低疾病的不确定性方面非常出色。鉴于此,我们提出了一种新颖的方法,这是第一次解决基于事件的动作识别的跨模式概念化的识别。我们的确切确切带来了两项技术贡献。首先,我们提出了一个自适应细粒事件(AFE)表示,以自适应地过滤固定对象的重复事件,同时保留动态的对象。这巧妙地增强了精确的性能,而无需额外的计算成本。然后,我们提出了一个基于概念推理的不确定性估计模块,该模块模拟了识别过程以丰富语义代表。尤其是,概念推理基于动作语义建立时间关系,而不必要的估计可以解决基于分布表示的动作的语义不确定性。实验表明,在PAF,HADDV和我们的SEACT数据集上,我们的确切确切识别获得了94.83%(+2.23%),90.10%(+2.23%),90.10%(+37.47%)和67.24%。
通过端粒到核(T2T)基因组学对植物种质资源的精确探索标志着植物基因组学领域的变革性一步,为对植物遗传多样性,适应性和进化的深入了解开辟了前所未有的机会。该研究主题的目的是强调测序和组装技术的最新进步,这些技术允许建造高质量的全长T2T基因组,并探讨这些突破如何促进和利用有价值的植物种植资源。实现T2T完整性对于提供染色体的详尽表示至关重要,捕获以前难以捉摸的遗传信息,并为全面的注释铺平了道路。这张广泛的遗传图提供了对基因功能,基因组结构和植物特征的遗传基础的更深入的见解,所有这些都对改善农业实践和确保植物生物多样性的可持续性都是基本的。随着我们继续目睹测序技术的快速发展的景观,该研究主题旨在促进研究T2T基因组数据的巨大潜力的研究。我们关注这些基因组见解如何增强物种保护工作,为育种计划提供信息,并为遗传资源管理提供宝贵的信息。此外,我们深入研究了可转座元素在塑造植物基因组中的作用,研究了它们与基因组结构的动态相互作用及其对适应和进化所需的遗传鲁棒性的贡献。通过将有关T2T基因组组装,可转座元素动力学以及在植物育种和保护中的应用汇总在一起,该研究主题是旨在利用植物基因组学的研究人员的综合资源。最终,我们的目标是促进植物基因组学的进一步进步,这将有助于全球农业的更具可持续性和弹性的未来。
Prof. Rajnish Joshi, General Medicine Prof. Balakrishnan S, Pharmacology Prof. Vijender Singh, Psychiatry Prof. Vaishali Walke, Pathology & Lab Medicine Dr Saikat Das, Radiation Oncology Dr Swagata Brahmachari Dr Shubham Atal Dr Vaibhav ingle Dr Ankur Joshi Dr Brijesh Kumar Singh mr a. p dwivedi
材料和方法:这项随机对照开放的两臂试验包括IVF患者,并在胚胎转移前评估了免疫子宫内膜环境和精确治疗(ET)。2015年10月至2023年2月,有493名患者入学。子宫内膜活检。子宫内膜免疫促进涉及子宫内膜中细胞因子生物标志物的分析。如果诊断出免疫子宫内膜失调,则计算机随机化将患者分配给常规ET(无视免疫发射)或个性化ET(具有适合免疫功能的精确治疗)。主要分析的重点是使用改良意图对治疗人群(MITT)证明精度治疗的优势,不包括没有ET的患者。主要终点是ET第一次尝试后的活出生率(LBR)。
近年来,已经提出了连续的潜在空间(CLS)和DISCRETE潜在空间(DLS)深度学习模型,以改善医学图像分析。但是,这些模型遇到了不同的挑战。cls模型捕获了复杂的细节,但由于其强调低级特征,因此在结构表示和易男性方面通常缺乏解释性。尤其是,DLS模型提供了可解释性,鲁棒性以及由于其结构性潜在空间而捕获粗粒度信息的能力。但是,DLS模型在捕获细粒细节方面的功效有限。为了确定DLS和CLS模型的局限性,我们采用了Synergynet,这是一种新型的瓶颈体系结构,旨在增强现有的编码器 - 核编码器分割框架。Synergynet无缝地将离散和连续的表示形式整合到利用互补信息中,并成功保留了细学的表示的细节。我们对多器官分割和CAR-DIAC数据集进行的实验实验表明,SynergyNet的表现优于包括Transunet:Transunet:DICE评分提高2.16%的其他最新方法,而Hausdorff分别分别提高了11.13%。在评估皮肤病变和脑肿瘤分割数据集时,我们观察到皮肤病变分割的交互分数的1.71%的重新提高,脑肿瘤分割的增长率为8.58%。我们的创新方法为增强医学图像分析关键领域中深度学习模型的整体性能和能力铺平了道路。
精确的脉冲定时和时间编码在昆虫的神经系统和高阶动物的感觉外围中得到广泛应用。然而,传统的人工神经网络 (ANN) 和机器学习算法无法利用这种编码策略,因为它们的信号表示是基于速率的。即使在人工脉冲神经网络 (SNN) 的情况下,确定时间编码优于 ANN 的速率编码策略的应用仍然是一个悬而未决的挑战。神经形态传感处理系统为探索时间编码的潜在优势提供了理想的环境,因为它们能够从相对脉冲定时中有效地提取聚类或分类时空活动模式所需的信息。在这里,我们提出了一个受沙蝎启发的神经形态模型来探索时间编码的好处,并在基于事件的传感处理任务中对其进行验证。该任务包括仅使用八个空间分离的振动传感器的相对脉冲定时来定位目标。我们提出了两种不同的方法,其中 SNN 以无监督的方式学习聚类时空模式,并展示了如何通过分析和多个 SNN 模型的数值模拟来解决该任务。我们认为,所提出的模型对于使用精确脉冲时间进行时空模式分类是最佳的,可以用作评估基于时间编码的事件感知处理模型的标准基准。
精确农业涉及使用实时信息来增强对资源的有效利用和对农业方法的监督,同时却最大程度地减少了不利的环境影响。多亏了遥感技术的进步,现在在农业部门中生产了大量的大数据。当使用机器和深度学习技术进行分析时,该数据需要转换为有价值的信息,已证明是有益的。这个研究主题“大数据,机器和深度学习的最新进展”吸引了20种高质量的文章,这些文章涵盖了现状的应用以及人工智能,大数据,特征优化,作物疾病检测和分类的精确农业的技术发展。在不断发展的农业景观中,三个关键主题已成为变革性变革的信标。本社论探讨了塑造农业未来的创新领域,重点是三个相互联系的主题:植物疾病检测和作物健康监测的进步,在精确农业中的人工智能(AI)和机器学习(ML)的整合以及用于作品生产优化的方法。在农业科学领域,由于开创性的研究努力,植物疾病检测和作物健康监测的动态景观已经取得了重大进展。Shoaib等。解决噬菌毒全球问题通过强调机器学习技术的关键作用来面对手动监测植物疾病的持续挑战。他们的工作提出了一个基于深度学习的系统,利用了在一个大量数据集中训练的卷积神经网络(Inception Net),其中包括18,161个细分和非细分的番茄叶图像。值得注意的是使用两个最先进的语义分割模型U-NET和修改的U-NET进行疾病检测和分割。结果展示了修改后的U-Net模型的出色性能,超过现有方法,并以高精度对植物疾病进行分类时的效率。