摘要 - 浮点精度调整(FPPT)搜索TAR-获取可降低精确度的计算程序的程序,从而交易绩效准确性。fppt通过搜索程序变体的混合精确设计空间来最大程度地受到某些正确性crite-crite-ria的约束。鉴于它们的计算强度和复杂性,天气和气候模型呈现出主要的FPPT目标。然而,过去在该领域的FPPT尝试受到域专家(乏味)和低精度仿真(掩盖速度)的手动努力的限制。自动化和性能引导的技术自然是感兴趣的,但尚未在此规模上探索。由定制的福特转换工具促进,本文介绍了第一个案例研究:基于在三个现实世界中的天气和气候模型中将FPPT应用于计算热点的各种结果(MPAS-A,ADCIRC和MOM6)(MOM6),我们确定和讨论了众多的范围,以获取最佳的范围,以获取最佳的范围。 这。
面向现场的控制(FOC)是一种行业标准的策略,用于控制感应电动机和其他类型的基于AC的电动机。以数字方式实施时,此控制方案具有很高的算术强度 - 特别是它需要使用三角函数。此要求与需要在需要时增加控制步骤频率的必要性,并且在保存电池寿命(例如无人机)的应用中最小化功耗。但是,它也非常适合使用精确调整技术优化。因此,我们利用最新的FIXM方法来通过应用三角函数的精确调整来优化模拟典型焦点应用的Miniapp。FIXM方法本身是扩展的,以实现其他算法选择,以实现执行时间和代码大小之间的权衡。随着FIXM在Miniapp上的应用,我们达到了高达278%的加速,输出的误差小于0.1%。
MIL-D1金属检测器不需要任何手动校准;此外,由于塞亚(Ceia)独家的Au-Tomatic土壤补偿系统,在所有类型的地形上都确保了最佳灵敏度。金属对象的定位是通过两色调的可听见的精确调整系统优化的,该系统允许准确识别检测到的质量的位置。
电介质光学微孔子在弯曲的介电 - 空气界面处的多个接近总内反射,将光限制在微小的圆形路径中,其中光对某些波长进行了建设性的干扰。这些微孔子可以通过精确调整其形状,大小和折射率来控制光限制和传播的可能性。
根据目前与语言学习相关的人工智能研究,人们一直强调开发辅导系统、写作伙伴、增强现实环境、聊天机器人和其他类型的移动学习系统/软件。这些工具的主要目标是通过提高独立性、动机、参与度和效率来创造个性化和可定制的成长机会,以促进语言学习。例如,基于 NLP 的辅导系统旨在提供定制的反馈、建议和材料。最近,随着人工智能的快速发展,这些工具可以根据每个用户的学习速度、偏好和需求(例如认知、情感、社交)实时精确调整内容(Jackson 等人,2019 年)。(Aly Abdul Samea Qoura)
大金的变速变频压缩机*技术目前在全球范围内提供节能的室内舒适度,安装量超过 5000 万台。这项成熟的技术会自动调整系统压缩机的性能,以满足实现您在恒温器上选择的温度所需的需求。这就像为您的家庭室内舒适度配备了巡航控制。系统会自动进行精确调整,以尽可能低的能耗提供最一致的舒适度。将其与单速压缩机进行比较,您会立即看到变频技术压缩机的优势。大金设计、设计和制造自己的变速变频压缩机。请放心,您将获得经过验证的设计 — 您获得的是大金内部设计。
量子系统的高保真度操作需要精确调整控制参数。量子系统的校准通常通过运行一系列复杂的相关实验来实现,而完整的系统校准可能需要数十次校准实验才能完成。最佳控制参数会随着时间的推移而漂移,实验量子系统的组件容易出现故障。因此,量子系统的持续运行需要自动化的后台进程,例如频繁的重新校准和监控。在本文中,我们介绍了一个调度工具包,该工具包使用可配置的遍历算法基于有向无环图来调度实验。我们的调度程序可以从任何进程触发,从而实现调度程序和量子控制系统之间的通用反馈。为了展示我们系统的功能,我们基于我们的调度工具包实现了一个复杂的系统校准算法。
来源:基因编辑是在农业生物技术中很重要,它提供了精确的方法它用于植物、鱼类和动物的育种,以提高农产品的质量和产量。据粮农组织 (2022) 称,这项技术有助于提高农作物产量。改善营养并增强对环境的适应能力。基因编辑有助于实现这一点。进行精确调整比传统育种更多,这可能有助于减少在亚太地区开发新菌株或品种所需的时间和成本由于时间、成本和市场要求,转基因作物的接受度有限。基因编辑可能特别有益,因为它的开发成本和加工成本较低对于发展中国家来说,这项技术是一种替代方案,可以帮助改良农产品,满足国家的需求。帮助解决安全问题食品和营养,考虑到社会、经济和环境可持续性的影响
扭曲的系统已成为具有广泛潜在应用的冷凝物理物理学中最迷人的平台之一。这些系统表现出一系列新型特性,包括相关的绝缘状态,磁性和超导性。通过操纵层之间的扭角,可以精确调整系统的电子特性。超越扭曲的双层石墨烯,例如石墨烯/HBN超级晶格,扭曲的单层双层石墨烯,扭曲的双重双层石墨烯和交替的扭曲石墨烯,也证明了许多独特的相关相图和带拓扑。这些系统提供了一个独特的平台,用于研究相关现象,并在电子和量子计算等领域具有潜在的应用。持续研究扭曲的石墨烯系统将产生许多令人兴奋的发现和进步。