摘要。我们报告了在基于超导微谐振器的定制高灵敏度光谱仪中在毫开尔文温度下进行的电子自旋回波包络调制 (ESEEM) 测量。谐振器的高品质因数和小模式体积(低至 0.2pL)允许探测少量自旋,低至 5 · 10 2 。我们在两个系统上测量了 2 脉冲 15 ESEEM:铒离子与天然丰度 CaWO 4 晶体中的 183 W 核耦合,铋供体与 28 Si 同位素富集的硅基板中的残留 29 Si 核耦合。我们还测量了硅中铋供体的 3 脉冲和 5 脉冲 ESEEM。对于近端核的超精细耦合强度和核自旋浓度都获得了定量一致性。
https://doi.org/10.5194/amt-2020-222 预印本。讨论开始日期:2020 年 6 月 22 日 c ⃝ 作者 2020。CC BY 4.0 许可。
摘要。核自旋能级在理解镧系元素单分子磁体中的磁化动力学以及量子比特的实现和控制方面起着重要作用。我们使用包括自旋轨道相互作用在内的多配置从头算方法(超越密度泛函理论)研究了阴离子 DyPc 2(Pc=酞菁)单分子磁体中 161 Dy 和 163 Dy 核的超精细和核四极相互作用。之所以选择 Dy 的两种同位素,是因为其他同位素的核自旋为零。这两种同位素的核自旋 I = 5 / 2,尽管核磁矩的大小和符号彼此不同。电子基态和第一激发的 Kramers 双线之间的巨大能隙使我们能够将微观超精细和四极相互作用汉密尔顿量映射到电子伪自旋 S eeff = 1 / 2 的有效汉密尔顿量上,这对应于基态 Kramers 双线。我们的从头算表明,核自旋和电子轨道角动量之间的耦合对超精细相互作用贡献最大,并且 161 Dy 和 163 Dy 核的超精细和核四极子相互作用都比 TbPc 2 单分子磁体中的 159 Tb 核的要小得多。计算出的电子-核能级分离与 163 DyPc 2 的实验数据相当。我们证明 Dy Kramers 离子的超精细相互作用会导致零场下的隧道分裂(或磁化的量子隧穿)。这种效应不会发生在 TbPc 2 单分子磁体中。发现 161 DyPc 2 和 163 DyPc 2 避免的能级交叉的磁场值明显不同,这可以从实验中观察到。
Lithium Australia 旨在通过创建循环电池经济,确保为电池行业提供合乎道德且可持续的能源金属供应(在此过程中增强能源安全)。回收废旧锂离子电池以制造新电池是该计划的内在要求。在合理化其锂项目/联盟组合的同时,Lithium Australia 继续研发其专有的提取工艺,将所有锂硅酸盐(包括矿山废料)和锂辉石加工中未使用的细粉转化为锂化学品。Lithium Australia 计划利用这些化学品为全球电池行业和澳大利亚的固定式储能系统生产先进的组件。通过整合资源和创新,Lithium Australia 寻求垂直整合锂的提取、加工和回收。
食指的运动捕捉生物力学可以涵盖广泛的主题,从触觉反馈到人体工程学负荷考虑以及许多与伤害相关的指标。这些分析的基础是食指运动范围和关节位置的运动捕捉,这需要高精度和可重复性的测量。如图 1 所示,此测量所需的传感器必须根据手指本身的小尺寸进行尺寸调整。根据所需模型的分辨率,可以将微型传感器放置在每个单独的手指节段或单个节段上。标准尺寸的传感器或微型传感器也可以放置在手上作为运动链的基础。放置传感器后,可以数字化其他地标以满足手和手指运动模型的要求。
已研究了将Barite-fuorspar矿物废物(BFMW)纳入一种细节添加剂,因为它对水泥砂浆的机械和屏蔽性能的影响。制备了几种砂浆混合物,以不同比例的BFMW为0%至30%,作为细胞骨料替代。水泥砂浆混合物的密度,压缩和拉伸强度以及伽马射线辐射屏蔽。结果表明,包含25%BFMW的砂浆混合物达到最高的抗压强度值,超过50 MPa。通过实验测试和使用Microshield软件包计算的计算测量伽马射线衰减的评估,结果表明,使用BFMW聚集体可将衰减系数增加约20%。这些发现表明,矿物废物可以适当用作部分替换骨料,以改善辐射屏蔽以及降低砂浆和混凝土成本。2016 Elsevier Ltd.保留所有权利。