N.V. Borzova,L.D。 varbanets分布,性质和α-半乳糖苷酶的实际意义。 微生物学期。 2024,N.V. Borzova,L.D。varbanets分布,性质和α-半乳糖苷酶的实际意义。微生物学期。2024,
在丘陵地区进行了广泛的研究,研究了植物际微生物组和根际以及居住在恶劣环境条件的微生物多样性。艰难的地形,不良的基础设施和脆弱的生态系统,其特征是山丘农业生态系统。因此,确定确定生物多样性的精确过程变得极为挑战。植物 - 微生物相互作用可以解释为什么植物能够生存。植物 - 微生物相互作用可能是植物适应方法生存的因素。因此,植物 - 微生物相互作用非常有价值,因为它们实际上是所有生物转化的责任,以及氮,碳和其他营养素的一致和平衡来源的产生,这些来源有助于随后植物群落的增长。结果,它有助于营养获得和积累。这些植物 - 微生物相互作用也有助于生物修复和土地恢复。因此,土壤形成和养分输入的第一个过程取决于植物 - 微生物相互作用的活性。那些可以忍受较高高度气候的细菌对于植物发育至关重要。为了在恶劣的环境环境中生存,微生物在各种环境中演变出来。因此,发现强大的微生物和使它们在极端温度环境中生活的机制至关重要。后来,农民可以在现场实验中应用类似的想法,以在世界上最冷和最严厉的地区进行长期农业生产。本文包括对潜在的植物 - 微生物相互作用以及居住在丘陵地点的植物和微生物生物多样性采用的自适应方法的简要检查。
摘要 本研究旨在从塞内加尔刺桐叶和茎皮中分离植物成分,并评估其对与糖尿病相关的消化酶α-葡萄糖苷酶的抑制活性。对叶子的植物化学研究结果分离出三种皂苷(3-5)、两种三萜类化合物(7和8)和两种甾体(10a和10b)作为不可分离的混合物,而从茎皮中分离出一种皂苷(6)、一种三萜类化合物(9)和两种肉桂酸酯的混合物(2a和2b)。除化合物2b、7、8、10a和10b外,所有分离的化合物均为首次从刺桐属植物中报道。两种肉桂酸酯(2a 和 2b)的混合物乙酰化后,生成一种新的二酯衍生物(1),俗称刺桐花苷。与标准药物阿卡波糖相比,提取物和纯化合物(3、4、6)表现出良好的 a -葡萄糖苷酶抑制活性。研究结果表明,E. senegalensis 的皂苷可用于开发潜在的抗高血糖药物。
糖尿病 (DM) 是全球面临的重大健康挑战,是全球第三大死亡原因。心血管疾病、肾脏损害和神经病变是糖尿病患者死亡率高的主要原因。小肠中的α-葡萄糖苷酶负责水解长链碳水化合物,从而导致高血糖。抑制α-葡萄糖苷酶已成为降低血糖水平的重要治疗目标。本文献综述旨在提供印度尼西亚药用植物作为抗糖尿病酶抑制剂的 α-葡萄糖苷酶活性数据库。所用方法是对 2020 年至 2024 年期间发表的科学文章进行文献综述。对获得的 258 篇科学文章进行了再次筛选,并获得 19 篇文章作为主要来源,5 篇文章作为附加数据来源,讨论了印度尼西亚药用植物中 α-葡萄糖苷酶抑制剂的活性。审查结果表明,有23种印度尼西亚药用植物具有α-葡萄糖苷酶抑制活性的潜力。在这 23 种植物中,有 15 种植物与测试对照相比表现出相当强的抑制活性,即阿卡波糖和槲皮素,包括 secang、kersen、辣木、mengkudu、temu mangga、jamblang、ciplukan、mahkota dewa、pucuk merah、meniran、brotowali、karang gabus tree、芦荟、山竹和 binahong。
摘要。心力衰竭和骨骼肌弱是糖基因论11型的主要临床特征,这是由酸A-葡萄糖苷酶缺乏引起的溶酶体储存障碍。在我们的研究中,我们已经在大鼠心脏灌注灌注系统中调查了酸A-葡萄糖苷酶是否可以从血管系统中吸收到心脏病中。将大鼠心脏用含有含磷酸盐的甘露糖含有甘露糖的含酸A-葡萄糖苷酶灌注,从Bovine睾丸纯化时,获得了3至4倍的酶活性。灌注含有含有甘露糖的6-磷酸盐识别标记物的人胎盘酸A-葡萄糖酶没有这种作用。通过免疫印迹证明了牛睾丸酸A-葡萄糖苷酶在心脏组织中的存在。免疫细胞化学为摄取心肌细胞溶酶体的外源性酶提供了证据。讨论了这些发现与I1型糖原病中酶治疗的相关性。(Pe-Diatr Res 28:344-347,1990)
细菌 Clostridium cellulolyticum 是整合生物加工 (CBP) 的有希望的候选者。然而,需要进行基因工程来提高这种生物的纤维素降解和生物转化效率,以满足标准的工业要求。在本研究中,CRISPR-Cas9n 用于将高效的 β -葡萄糖苷酶整合到 C. cellulolyticum 的基因组中,破坏乳酸脱氢酶 ( ldh ) 表达并降低乳酸产量。与野生型相比,工程菌株的 β -葡萄糖苷酶活性增加了 7.4 倍,ldh 表达减少了 70%,纤维素降解增加了 12%,乙醇产量增加了 32%。此外,ldh 被确定为异源表达的潜在位点。这些结果表明,同时进行 β -葡萄糖苷酶整合和乳酸脱氢酶破坏是提高 C. cellulolyticum 中纤维素到乙醇的生物转化率的有效策略。
摘要 α-葡萄糖苷酶抑制剂是一种潜在的抗糖尿病药物,可用于控制糖尿病患者的血糖。本研究旨在通过体外测试筛选高良姜各部位对 α-葡萄糖苷酶的抑制活性。作为一项初步研究,评估了高良姜根茎、茎、叶和果实的 70% 乙醇提取物对 α-葡萄糖苷酶的抑制作用,以及总酚含量和基于卤虫致死率测试 (BSLT) 的毒性。植物提取物的每个部分都显示出比阳性对照阿卡波糖更高的 IC 50 值(果实提取物的 IC 50 = 14.39 μg/ml,叶提取物的 IC 50 6.13 μg/ml,茎提取物的 IC 50 20.57 μg/ml,根茎提取物的 IC 50 126.67 μg/ml 和阿卡波糖的 IC 50 172.02 μg/ml)。有趣的是,每种提取物还显示出不同的总酚含量,其顺序与它们在抑制 α-葡萄糖苷酶活性方面的 IC 50 相同。此外,BSLT 显示只有叶子和茎属于无毒组。根据测定,这表明这种植物具有作为抗糖尿病药物进行研究的潜力。
乙醇提取物表现出抗糖尿病活性,对 L6 myoutube 大鼠的 α-葡萄糖苷酶、α-淀粉酶和葡萄糖摄取的抑制分析结果显示。从菠萝冠中提取乙醇提取物,并分馏得到 3 种馏分,即乙酸乙酯馏分、正己烷馏分和水馏分。使用 H-NMR 鉴定每个馏分以确定其中存在的化合物类别。对乙酸乙酯、正己烷和水馏分的 H-NMR 分析显示存在酚类化合物。浓度为 250 µg/mL 的乙酸乙酯馏分可以抑制 62.03% 的 α-葡萄糖苷酶和 71.68% 的 α-淀粉酶。乙酸乙酯馏分能够增加 L6 myoutube 的葡萄糖摄入量,百分比增加 89.82%。与作为阳性对照的胰岛素相比,这个数字相当高。本研究为首次报道菠萝冠馏分对α-葡萄糖苷酶和α-淀粉酶的抑制作用及对L6 myoutube大鼠葡萄糖摄取的影响,根据本研究结果发现菠萝冠乙酸乙酯馏分具有抗糖尿病活性。
Chit 的生物学作用尚未被充分认识,尽管已证实它能水解几丁质,而几丁质是许多昆虫和病原体的结构和功能成分 [2]。在正常个体和 CHIT1 基因外显子 10 突变的患者血浆中发现了 Chit 活性的变化,从而导致无症状的 Chit 活性缺乏 [3, 4]。这种酶缺乏的病理生理意义尚不十分清楚。在正常个体中,Chit 活性已被确定为巨噬细胞活化的标志。事实上,患有伴有显著吞噬细胞活性的慢性疾病的患者,如溶酶体戈谢病和尼曼匹克病 [5]、β-地中海贫血 [6] 或动脉粥样硬化 [7],以及患有急性和慢性寄生虫感染的患者,如疟疾和利什曼病 [8],其血浆中的 Chit 活性均升高。据报道,在戈谢病 [9] 中存在鞘内 Chit 活性的证据,并且初步研究也表明,在一些慢性炎症性神经系统疾病(如中风和多发性硬化症)中也存在这种活性 [10, 11]。在创伤性脑损伤 (TBI) 中,人类和动物研究均报告了鞘内胶质细胞活化、巨噬细胞浸润和细胞因子产生增加 [12, 13]。特别是慢性胶质细胞活化与神经退行性病变的进展有关 [14]。
对于MF方法,大多数参与者(55%)遵循(EN)ISO 9308-1:2014,使用基于酶的发色培养基CCA。CCA由于培养基的选择性低而适用于低细菌背景菌群的水。在CCA上,β -D-半乳糖苷酶阳性(粉红色至红色)菌落被计为假定的大肠菌菌。 β -D-半乳糖苷酶和β -D-葡萄糖醛酸酶阳性(深蓝色至紫)菌落被计为大肠杆菌。 总大肠菌菌是氧化酶阴性的大肠菌菌和大肠杆菌的总和。 ISO 9308-1:2014是ISO在2019年上次审查,并且仍然是最新的。 可以对CCA的孵化时间和性能测试进行修订(ISO 9308-1:2014/AMD 1:2016)。在CCA上,β -D-半乳糖苷酶阳性(粉红色至红色)菌落被计为假定的大肠菌菌。β -D-半乳糖苷酶和β -D-葡萄糖醛酸酶阳性(深蓝色至紫)菌落被计为大肠杆菌。总大肠菌菌是氧化酶阴性的大肠菌菌和大肠杆菌的总和。ISO 9308-1:2014是ISO在2019年上次审查,并且仍然是最新的。 可以对CCA的孵化时间和性能测试进行修订(ISO 9308-1:2014/AMD 1:2016)。ISO 9308-1:2014是ISO在2019年上次审查,并且仍然是最新的。可以对CCA的孵化时间和性能测试进行修订(ISO 9308-1:2014/AMD 1:2016)。