摘要,对表面变暖的顶部大气(TOA)辐射反应的现实表示是信任气候模型预测的关键。我们表明,具有自由发展的海洋大气相互作用的耦合模型系统地低估了552个模拟中观察到的全球TOA辐射趋势。在局部,即使模拟自发地重现了观察到的表面温度趋势,TOA辐射趋势的可能性要低于高估。这种反应偏见源于模型无法再现观察到的大规模表面变暖模式以及影响短波辐射的大气物理学的误差。模型更好地表示TOA辐射对局部表面变暖的响应具有相对较低的气候灵敏度。我们的偏见度量是一种基于过程的新方法,它将模型的当前反应与气候变化与未来的行为联系起来。
摘要海洋生态系统模型(MEMS)越来越多地受到地球系统模型(ESM)的驱动,以更好地了解海洋生态系统动力学,并在气候变化的潜在情况下分析海洋生态系统的替代管理工作的影响。然而,政策和商业活动通常发生在季节到年代的时间尺度上,这是全球气候建模社区中广泛使用的时间范围,但在此,对MEMS的技能水平评估处于起步阶段。这主要是由于技术障碍阻止了全球MEM社区进行大型集合模拟,以进行系统的技能评估。在这里,我们开发了一个新颖的分布式执行框架,该框架由低技术和免费的技术构建,以实现链接的ESM/MEM预测集合的系统执行和分析。我们将此框架应用于季节性到少年时间尺度,并评估初始化际ESM预测合奏中回顾性预测不确定性如何影响机械和时空显式全球滋养动力学mem。我们的结果表明,与与重建渔业相关的广泛假设相比,ESM内部变异性对MEM可变性的影响相对较低。我们还观察到结果对ESM的特异性也很敏感。我们的案例研究需要进一步的系统探索,以消除气候变化,渔业场景,MEM内部生态假设和ESM变异性的影响。最重要的是,我们的案例研究表明,一个简单且免费的分布式执行框架有可能增强任何具有基本功能的建模组,以使海洋生态系统建模运行。
创新技术竞争性训练的本质是学生的创造主动性、自主学习的需要、提高理论训练水平以及发展独立活动。因此,在确定主要任务时,重要的是鼓励年轻人求知、积极主动,在各种实践活动中体现知识的重要性,并特别注意发展独立学习的能力。社会上任何领域的发展,高度的方向都与该领域专家的智力潜力密切相关。专家在高等教育中达到获得科学和实践潜力的初始阶段。高等教育机构的声誉取决于培养人员的素质,即结合现代知识、独立思考和高尚的精神和道德品质的能力。根据乌兹别克斯坦共和国总统于2019年10月8日颁布的“关于批准2030年前乌兹别克斯坦共和国高等教育体系发展概念”PD-5847号令,培养高素质人才的过程教育体系的主要任务是发展社会领域和经济[1]。因此,遗传弹性理论的方法和问题引起了研究人员的广泛关注。有大量的出版物致力于解决计算粘弹性薄壁结构特性的问题[2-7]。尽管有大量研究致力于粘弹性薄壁结构,但迄今为止尚未研究飞机粘弹性机翼的弯曲扭转颤振。这种情况表明了这项研究的相关性。这项研究的目的是开发机翼在气流中的弯曲扭转振动的数学模型并确定设计的颤振。 * 通讯作者:Iscmmstiai2022@gmail.com
背景:地幔细胞淋巴瘤(MCL)是一种属于非霍奇金淋巴瘤的异质疾病。近年来,MCL的发病率正在上升,预后仍然不利。泛素特异性蛋白酶14(USP14)已证明参与恶性肿瘤的过程。在本文中,讨论了USP14在MCL的恶性过程中的作用和依鲁替尼抗性的机制。方法:通过QRT-PCR和Western印迹,测试了MCL细胞中USP14的mRNA和蛋白质表达。USP14干扰质粒是通过细胞转染技术构建的,然后将CCK8和EDU分析用于评估细胞增殖。细胞周期和细胞凋亡。还研究了MCL细胞对依鲁替尼的敏感性。接下来,使用Western印迹,Co-IP,环己酰亚胺(CHX)测定和其他技术来检测USP14和XPO1之间的关系。最后,讨论了USP14对MCL的恶性过程的影响和过度表达XPO1的同时抑制USP14和过表达的XPO1,并讨论了MCL中Ibrutinib敏感性的调节机制。结果:USP14表达在MCL细胞系中明显强化。USP14的干扰抑制了MCL细胞活力,增强的细胞周期停滞,凋亡和Ibrutinib敏感性。通过增强XPO1稳定性,USP14去泛素化可以实现此过程。结论:USP14可以通过稳定XPO1来促进MCL的恶性进展和ibrutinib敏感性。
大型丝氨酸重组酶 (LSR) 是一种 DNA 整合酶,可促进移动遗传元件在细菌基因组中的位点特异性整合。迄今为止,只有少数 LSR(如 Bxb1 和 PhiC31)被鉴定,作为人类细胞中 DNA 整合的工具,其效率有限。在这项研究中,我们开发了一种计算方法来识别数千个 LSR 及其 DNA 附着位点,将已知的 LSR 多样性扩大了 100 倍以上,并能够预测它们的插入位点特异性。我们在人类细胞中测试了它们的重组活性,将它们归类为着陆垫、基因组靶向或多靶向 LSR。总体而言,我们实现了比 Bxb1 高出七倍的重组率,基因组整合效率为 40-75%,货物大小超过 7 kb。我们还展示了无病毒的质粒或扩增子文库的直接整合,以改进功能基因组学应用。这种直接从微生物测序数据中系统地发现重组酶的做法,提供了超过 60 种在人体细胞中经过实验表征的 LSR 资源,可用于大负载基因组插入,且不会暴露 DNA 双链断裂。
摘要 - 灯在控制和观察生物学过程中广泛用于生命科学中,但是在组织内部使用光的长期挑战在于可见光的渗透深度有限。在过去的十年中,已经开发了许多使用光子学和材料科学工具的体内光递送方法,最近证明了基于系统传递的发光纳米材料的非侵入性,深度组织光源。从这个角度来看,我们提供了插入式纳米光源原理的概述,并讨论了它们的优势,而不是现有的体内光传递方法。然后,我们强调了它们最近在现场动物中的光遗传学神经调节和荧光成像中的应用。我们还提供了一个展望部分,介绍了将这些非侵入性光源与其他模式相结合以扩大生物学中光的实用性的可行性。
深度学习方法在原始脑电图(EEG)数据中的应用越来越普遍。这些方法提供了相对于手动设计功能的其他方法提高性能的可能性,但它们也提出了可解释性降低的问题。因此,许多研究试图提供与基于深度学习的RAW EEG分类领域的独特性解释性方法。在这项研究中,我们提供了这些方法的分类法,确定了提供有关空间,光谱和时间特征的见解的现有方法。然后,我们提出了一个新的框架,该框架由一系列解释性方法组成,以了解对经过原始脑电图数据培训的分类器的洞察力。我们的框架提供了类似于现有方法的空间,光谱和时间解释。,据我们所知,它还提出了第一种解释性方法,以洞悉脑电图中的空间和时空相互作用。鉴于脑电图和神经精神疾病分析的频繁使用和特征的重要性,这一点尤其重要。我们在自动化的重度抑郁症(MDD)诊断的背景下演示了我们提出的框架,培训在公开可用的数据集中采用强大的交叉验证方法训练高性能的一维卷积神经网络。我们确定了中央电极与其他电极之间的相互作用,并确定健康对照组和MDD个体之间额叶θ,β和γ的差异。我们的研究代表了基于深度学习的RAW EEG分类领域的重要一步,从而在互动性上提供了新的功能,并通过我们建议的分类法为未来的创新提供了方向。
如果不采取行动,到 2050 年,全球每年的细菌数量将高达 1000 万。[2,6,7] 细菌附着在表面后,会继续生长并合成胞外多糖,而胞外多糖又会促进细菌粘附在表面和其他细菌上,从而增加了清除的难度。[5,8,9] 由此产生的生物膜以及抗菌药物耐药性增加,使得开发新的有效方法来最大限度地减少细菌传播和细菌感染率成为当务之急。[10,11] 新型抗菌材料可能有助于解决这一问题,它能防止细菌的初始粘附和/或利用杀生物剂杀死附着的细菌。然而,后者还有加速抗菌药物耐药性的风险,此外还有与铜或三丁基锡等杀生物剂有关的毒性。[9,12,13]
。CC-BY-NC 4.0 国际许可下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2022 年 9 月 14 日发布。;https://doi.org/10.1101/2022.09.14.507927 doi:bioRxiv 预印本