A Review on the Utilization of Energy Storage System for the Flexible and Safe Operation of Renewable Energy Microgrids LIU Chang 1 , ZHUO Jiankun 1* , ZHAO Dongming 2 , LI Shuiqing 1 , CHEN Jingshuo 2 , WANG Jinxing 1 , YAO Qiang 1
Key words : voice interaction; safety regulation question bank; quick find; text feature 中图分类号 : TM08 文献标识码 : A 文章编号 : 1008-6226 (2023) 12-0027-03
编码特征作为预测结果,邀请用户进行认知情况调 研。从用户调研数据的计算结果可知,用户对不同特 征编码的认知存在一定的共性,有共同的认知习惯。 1 )就属性语义来看,认知效率主要受色相、明 度、饱和度、尺寸、位置、形状的影响。色相:国军 标对色彩的应用有明确的规范,在进行色相编码时, 应考虑用户对专用色彩属性的认知习惯,严格遵守色 彩使用规范。对于没有硬性规定的色彩,也应以用户 过往的知识、经验为基础进行编码设计。如,在界面 设计中,一般认为红色表示危险,黄色表示警告,绿 色表示安全。明度:实验表明,在深色背景下,明度 越高信息等级越高。战术显控系统复杂性较高,合适 的明度编码设计适合应用于信息层级设计,能够有效 降低用户的学习成本。饱和度:饱和度取决于该色中 含色成分和消色成分(灰色)的比例。含色成分越大, 饱和度越大;消色成分越大,饱和度越小 [14] 。高饱和 度的色彩编码方式更能引起视觉关注,帮助用户集中 注意力。形状:在战术显控系统中,涉及形状属性的 元素主要为图形和符号,包括通用类和特殊类。在进 行形状编码时,现有图符应遵循沿用的原则,新的图 符应结合现实形态、行业背景进行设计,以符合用户 认知习惯、缩短学习过程,提高交互效率。尺寸:根 据实验结果显示,信息尺寸的大小与信息的重要等级 成正比,信息越重要,尺寸越大。位置:用户对显示 屏上的信息关注度依次为中间、左上方、右上方、左 下方、右下方 [15] 。在进行界面布局时,应注意信息等 级与其在界面中位置的一致性,同时要保证同类信息 的位置编码统一。 2 )就情感语义来看,战时用户的生理和心理负 荷较高,任务情景的不确定性易增加用户的操作压 力 [5] 。在进行交互界面设计时应考虑信息编码元素的 情感性。从实验结果来看,影响情感语义的特征主要 为形状和色彩。尖锐的形态容易让用户产生较大的心 理压力,而圆润浑厚的形状更容易使用户平静。在进 行形状编码时,可采用倒角的设计手法。根据蒙赛尔 色彩体系对色彩要素的划分及实验结果,战术显控系 统的主色可以选用冷色调,明度、饱和度不宜过高, 以避免色彩刺激增加用户的焦虑感。而对于重点信息 和即时变化类信息,可采用高明度或高饱和度的色 彩,以提高用户的警觉性。
hibit降低了渗透性,因此需要建立有效的地热系统(EGS)以利用深度地热能。在EGS中,用于液压压裂用于储层刺激,以人为增强的地热储层具有较高的渗透性。当前的深地热储量刺激技术主要是从石油和天然气部门采用的液压压裂过程中借来的,对刺激性能,地震风险控制和有效的地热储层的热萃取产生了限制。这项研究总结了深度地热能的液压压裂的特征:(1)剪切机理主导着断裂诱导的损伤。(2)冷水注入诱导的差分温度所产生的拉伸应力鼓励裂缝进一步传播。(3)连续的水注入使孔压力保持高于地层压力,从而为裂缝保持良好的条件保持开放。因此,EGS中的液压压裂不需要支撑剂。这与石油和天然气井的液压破裂完全不同,这在很大程度上依赖于支撑剂。此外,这项研究系统地分析了EGS的四个主要挑战:低发电能力,注入和生产井之间的连通性差,诱发破坏性地震的风险以及在没有补贴的情况下获得利润的困难。这项研究通过数值模拟研究了Regs的优势。根据创新的破裂和能量回收的各个方面,本研究提出了一种与能源存储相结合的创新增强的开发模式,称为再生工程的地热系统(REGS)。结果表明,与水平井以及不等的间距,区域和注射水的体积的多阶段分裂可以增强注入和生产井之间的连通性。破裂过程在Regs中进行了优化。具体来说,采用了多阶段裂纹。在每个阶段,早期的水注射率迅速增加,并在晚期逐渐下降。这可以防止在井眼压力下突然波动,从而控制诱发地震的幅度并防止破坏性地震。Regs整合了可再生能源的大规模地下存储,实现了多能补充并增强了Regs项目的生产寿命和盈利能力。这项研究的最终成员将为试点项目和标准化促进技术的标准化奠定基础,用于融合的热量和发电,与储能集成在一起,用于中国深地热能。
根据世界卫生组织的数据,世界上有超过三百万人是盲人。这些人在日常生活中遭受了很多困难。他们变得依赖他人,我们的系统帮助他们识别一些日常互动物体。该系统可以识别周围的物体,并使用语音指令将其通知给用户,由于系统生成的语音输出,整个系统的操作都可以被理解。用户可以向系统发出语音指令来执行他们想要执行的操作。该系统使用各种传感器,如摄像头、超声波传感器、PIR 传感器,从而提高了系统的运行效率。因此,它是物联网和人工智能的跨学科方法。通过使用单板计算机 Raspberry pi 4,我们执行我们创建的程序,该程序检测并向用户提供有关对象的信息。传感器由单独的 Arduino Uno r3 处理,并通过串行端口接口将其计算信号提供给 Raspberry Pi,这有助于最大限度地减少 Raspberry Pi 的计算工作。
2019 年 9 月 2 日至 6 日,亚洲/太平洋空中航行规划和实施地区小组 (APANPIRG) 通信、导航和监视小组 (CNS SG/23) 第二十三次会议在泰国曼谷国际民航组织地区办事处举行。会议审议了 SURICG/4 报告以及其他 CNS SG/23 工作文件,并注意到 ATM SG/7 会议还听取了关于成立工作组处理 ATMAS 问题的提案的简报。多个国家/行政当局表示愿意支持工作队的工作,其中包括中国、中国香港、印度、印度尼西亚、尼泊尔、新加坡、泰国和美国。因此,会议通过了“决定 CNS SG/23/13 (SURICG/4/5) - 成立 ATM 自动化系统工作队 (ATMAS/TF)”。
• 识别高风险人工智能系统:识别高风险系统需要新的实践。这些新实践应尽可能融入现有的风险工作流程。这种方法有助于减少冗余,加快实施速度,并改善审查人工智能系统所必需的协作。WaTech 管理着多个风险流程,这些流程可用于整合新的人工智能风险实践,包括信息安全风险评估、安全设计审查、隐私阈值分析和隐私影响评估。这些流程非常适合在系统首次实施时评估预期的系统用途,应进行修改,以要求机构在必要的安全或隐私审查期间记录人工智能系统风险级别。WaTech 已制定指南,帮助机构确定风险级别。当识别出高风险系统时,应在实施前完成完整的风险评估。
作战分析(或运筹学,现在在美国更常见的称呼)源于第二次世界大战期间的需要和机遇。需要是需要设计有效的作战程序,以使用在整个战争期间迅速进入军队的新的探测和破坏技术,而没有时间进行常规测试和野外演习。机遇是军队可以获得科学家,他们可以运用他们的分析技能和工具来快速有效地设计和测试作战程序。这些科学家来自多个学科:物理学、工程学、数学和统计学,甚至生物学。他们为作战分析(和设计)问题带来的是物理和生物科学的一般分析和实验方法以及数学、实验设计和统计学的特定工具,使他们能够找到最佳甚至最优的程序,而无需进行昂贵且耗时的野外演习。
必须由Internet网络支持该系统以连接所有信息流。使用这种SCM方法获得的基本上是由物质或产品形式的物理流,以货币或信贷形式的支付流以及能力,交付时间表,订单的形式的信息流。所需的基于Web的信息系统可以实时提供信息,以便SCM中的决策过程可以很好地运行。5 SCM的基本组件包括计划,商品来源,制造,运输和收益。通过实施此库存和分销系统,可以预计公司可以继续发展以面对业务竞争。
to Up) ........................................................................................................................... 97