摘要:本文的目的是提出一个决策支持系统(DSS),以捕获在多个可持续性主题的背景下,国家能源系统向零净净的复杂性。本文提出了一个集成的评估框架,该框架结合了动态系统模型,可持续性指标和多标准决策分析(MCDA)与直接利益相关者的参与。为了说明DSS的使用,论文比较了旨在脱碳的气候变化政策,以使冰岛的公路运输部门脱碳。基于三个主要驱动力的组合,为冰岛能源系统定义了18个场景和替代发展轨迹。这些首先是经济发展(三个案例);其次,能源效率的变化(两种情况);最后,三个旨在增加电动汽车份额的气候政策捆绑包。根据综合评估框架的结果,在以下五个可持续性主题中比较气候政策束的性能得分:社会影响;经济发展;环境影响;能源安全;和技术方面。调查结果证实,与传统的技术经济标准相比,将多个可持续性主题应用于首选策略捆绑包中时可能会得出不同的结论。禁止对化石燃料车辆的注册,再加上经济工具,提供了同时达到气候和能源政策目标的最佳脱碳策略。
2Grib(以二进制形式以常规规则分布的信息)是WMO的WMO标准,用于运营气象数据3ECV(基本气候变量)是变量和相关质量目标的标准列表,用于协调地球观察数据产品。https://gcos.wmo.int/index.php/en/essential-climate-variables 4 https://gcos.wmo.int/en/global-climate-indicators 5此讨论基于ESGF索引的信息,来自ESGF INDEX,8月24日,2023年8月24日。6 CMIP中最近(历史)的全努力实验旨在使模型模拟对当前气候和观察到的气候变化进行评估。7 CMIP6的数据发布仍在进行中,但是随着数据量的扩展,存档中的空白模式仍然存在。
由于我们的模型从2015年开始,因此我们需要包括往年的年度燃料生产。让我们考虑表1中的示例,其中可用数据是2022年。在这种情况下,有必要添加2015年至2021年的年度制作,因为这些数量是建模范围开始时储备金的一部分(即,我们的建模从2015年开始,因此储量应反映2015年的估计值)。
免责声明 本信息是根据美国政府机构资助的工作编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
欧盟的H2020 Rinno(建立低碳,气候弹性的未来:安全,清洁和高效的能源,GA 892071),Pocityf(一个积极的能源城市变换框架,GA 864400)和响应(综合解决方案(用于正能量和弹性城市的综合解决方案),GA:957751)财务支持
2023年,安大略省政府召集了一个跨部门DRS工作组。为了促进工作组内的讨论,加拿大饮料协会(CBA)委托Eunomia Research&Consulting对DRS计划进行比较研究,并准备六个DRS场景,以指导为安大略省的优化DRS开发。这项研究利用了全球DRS计划的见解和最佳实践,并将其应用于安大略省的环境,以确保与行业利益和监管期望保持一致的方法。Eunomia的研究评估并比较了立陶宛,挪威,德国,丹麦,芬兰,俄勒冈,不列颠哥伦比亚省和魁北克的DRS计划。Eunomia汲取了超过10年的全球分析和建模DRS计划的经验,包括:
摘要 CIBSE TM54 最近进行了修订,涵盖了评估建筑物运营能耗的最佳实践方法。TM54 是一份关于设计和施工过程每个阶段以及占用阶段的性能评估的指导文件,旨在确保长期运营性能符合设计意图。TM54 中的主要性能评估原则是逐步建模方法和情景测试,以提高设计方案计算的稳健性。最新版本为建模方法带来了更新的视角,包括使用供暖、通风和空调 (HVAC) 系统的动态模拟。它还包含有关风险、目标设定、情景测试和敏感性分析的更详细指导。案例研究方法用于探索 TM54 中描述的一些重要方面。TM54 推荐了三种建模方法(又称实施路线),项目可以根据其规模和复杂性遵循这些方法:使用准稳态工具;使用模板 HVAC 系统的动态模拟;使用详细 HVAC 系统建模的动态模拟。作为三篇系列文章的一部分,本案例研究提供了第二种实施路线的应用:使用模板 HVAC 进行动态模拟。实际应用:本案例研究提供了有关进行 CIBSE TM54 建模和预测设计阶段建筑性能的详细指导。该研究涵盖了如何使用模板 HVAC 系统的动态建模工具来解释和阐明 TM54。
摘要海洋生态系统模型(MEMS)越来越多地受到地球系统模型(ESM)的驱动,以更好地了解海洋生态系统动力学,并在气候变化的潜在情况下分析海洋生态系统的替代管理工作的影响。然而,政策和商业活动通常发生在季节到年代的时间尺度上,这是全球气候建模社区中广泛使用的时间范围,但在此,对MEMS的技能水平评估处于起步阶段。这主要是由于技术障碍阻止了全球MEM社区进行大型集合模拟,以进行系统的技能评估。在这里,我们开发了一个新颖的分布式执行框架,该框架由低技术和免费的技术构建,以实现链接的ESM/MEM预测集合的系统执行和分析。我们将此框架应用于季节性到少年时间尺度,并评估初始化际ESM预测合奏中回顾性预测不确定性如何影响机械和时空显式全球滋养动力学mem。我们的结果表明,与与重建渔业相关的广泛假设相比,ESM内部变异性对MEM可变性的影响相对较低。我们还观察到结果对ESM的特异性也很敏感。我们的案例研究需要进一步的系统探索,以消除气候变化,渔业场景,MEM内部生态假设和ESM变异性的影响。最重要的是,我们的案例研究表明,一个简单且免费的分布式执行框架有可能增强任何具有基本功能的建模组,以使海洋生态系统建模运行。
北大西洋喷气流强烈影响西北欧洲的天气,并在确定北大西洋大气循环指数(如北大西洋振荡(NAO),东大西洋(EA)模式)和斯堪的纳维亚(SCA)模式的强度和迹象中发挥了重要作用; the anomalous weather pat- terns of a particular season can be described by the inter- play of these modes of variability (Hall & Hanna, 2018 ).最近的极端季节的特征是不同的喷气流配置,喷气强度和位置与西北欧洲各地经验丰富的极端天气条件(例如,在温度和降水量)之间有着密切的联系(Hall&Hanna,2018年)。极端的季节性天气在避免风险方面具有重要的社会经济影响,其成本对保险业(例如,2013/14年冬季英国的15亿英镑(Davies,2014年))对农业,粮食安全,能源供应,公共健康/公共卫生/福祉和恶劣天气计划的影响。直到最近,北大西洋大气变异性很大程度上是由于不可预测的波动(Stephenson等,2000)。然而,动态季节性预测系统已被用来开发熟练的季节性预测,从未来几个月开始为英国冬季天气(Scaife等,2014)。这些喷气流变异性的驱动因素可以互相反对或加强,并且有迹象表明它们之间的相互作用(Hall等,2019)。喷射流变异性的驱动因素显示出季节性变化和喷气流变异性的独特驱动因素在不同的海子中起作用。Many fac- tors (drivers) appear to influence the NAO and jet-stream changes, and these potential drivers can be broadly grouped into cryosphere effects from variations in sea-ice extent and snow cover, oceanic effects from North Atlan- tic sea-surface temperatures (SST), tropical influences such as the El-Niño Southern Oscillation (ENSO), and stratospheric effects due to stratospheric circulation vari- ability, solar variability, volcanic eruptions and the Quasi-Biennial Oscillation (QBO) (Hall et al., 2015 ).除了这些可识别的驱动因素外,由于混乱的内部动力学过程,北大西洋喷气机的一部分的特征是内部未强制性的可变性驱动的(Kushnir等,2006; Lorenz,1963)。现在已经达成共识,即在气候模型中可以再现了一些观察到的驱动因素,但对最近确定的北大西洋地区驱动器的驱动因素的理解提高了,这对于在英国季节性气候预测中取得进展至关重要(Hall等人,2015年,2015年)。The focus of government-funded research is on dynami- cal forecast systems; however, such forecasts are not always