经典物理学(如汉密尔顿动力学)和量子物理学(如幺正动力学)的标准描述都描述了封闭系统。它们的形式主义排除了描述与周围环境交换能量的系统的可能性。在经典物理学中,这个问题由波特-汉密尔顿理论解决,该理论允许描述开放系统及其相互作用。在量子力学中,不存在这种全面的开放系统理论。量子系统的组合是由张量积构造定义的,因此量子系统的组合和分解要困难得多。在本文中,我们利用有限维量子系统的任何张量积组合都可以重写为直接和分解这一事实,成功地解决了该问题的运动学部分。通过不失一般性地仅考虑其希尔伯特空间是 SU(2) 的可约或不可约表示的基本量子系统,可以得到唯一的这种直接和分解。现在可以根据这个结果建立以量子端口哈密顿方式分解的量子系统的动力学描述,并进行简要介绍。
简介 自由能原理(见词汇表)是一个有着复杂含义的简单假设。它表明,大脑中的任何适应性变化都会使自由能最小化。这种最小化可能是在进化时间(自然选择期间)或毫秒(感知合成期间)内发生的。事实上,该原理适用于任何抵抗无序趋势的生物系统;从单细胞生物到社交网络。 自由能原理试图从我们存在的事实出发来解释大脑的结构和功能:这一事实限制了我们与世界的互动,这在进化生物学和系统理论中已经研究多年。然而,统计物理学和机器学习的最新进展指出了一个简单的方案,使生物系统能够遵守这些限制。如果将大脑视为实现这一方案(最小化无序的变分界限),那么其解剖学和生理学的几乎每个方面都开始变得有意义。接下来是对这种旧观念的新视角的回顾。
海德格尔现象学通过提出动态的,上下文嵌入的对人类的看法和认知的理解来挑战传统的西方形而上学和认知科学的机械观点。本文批评了传统的认知主义观点,尤其是其模块化论文,并主张了植根于海德格尔式见解的根本自上而下的(RTD)处理模型。它探讨了如何通过海德格尔(Heidegger)准备好的概念来理解的感知,并嵌入了背景条件(Taylor,2006年)的人类生存(DA-SEIN)(DA-SEIN),涉及与世界的整体互动,而不是对感觉数据的被动接受。利用当代认知理论,例如4EA(体现 - 激活 - 扩展 - 伴随的感染性)认知,DST(动态系统理论)和PPT(预测性处理理论),本文提出了一种动态和交互式的感知方法,通过对人类的静态,文化和层面的构建,对人类的构成,并具有既定的经验。现象学。
过去几十年来,统计力学、动力系统理论和信息论的研究表明,信息是一个动态量,在物理学中起着根本性的作用 1–3 。许多经典现象和热力学现象可以通过信息论的视角得到更好的理解;一个相关的例子就是近年来量子信息科学的出现。今年夏天,我探索了将经典信息论的形式扩展到量子领域的各种方法。现有几条量子信息论定理证明了不能做的事情的界限。例如,不可克隆定理告诉我们,物理学禁止我们复制未知的量子态 4 。另一方面,不可隐藏定理告诉我们,由于退相干而“丢失”的量子信息实际上只是消散在更大的环境中。因此,量子信息既不会被创造也不会被毁灭——它是一个守恒量。
计算机辅助设计 (续) 本课程符合控制、自动化及仪器仪表 (CAI) 学科计划“A”的资格,但毕业生必须完成下列任何两组选修课: 1) “ELEG 3101 - 医疗仪器及传感器” 2) “MAEG 1010 - 机器人设计导论” 3) “MAEG 3060 - 机器人技术导论” 4) “MAEG 3080 - 机器智能基础” 5) “MAEG 4040 - 机电一体化系统” 6) “MAEG 4050 - 现代控制系统分析与设计” 7) “MAEG 5070 - 非线性控制系统” 8) “MAEG 5090 - 机器人技术专题” 9) “MAEG 5010 / ENGG 5402 - 高级机器人技术” 10) “MAEG 5020 / ENGG 5403 - 线性控制系统专题 /线性系统理论与设计” 11)“MAEG 5050 / ENGG 5404 - MEMS 和纳米机器人 / 微加工和微机电系统”
针对网络物理系统(CPS)可靠运行的主要挑战之一是网络攻击在系统驱动信号和测量方面的威胁。近年来,系统理论研究的重点是有效地检测和隔离这些网络攻击,以确保正确的恢复措施。尽管在这种情况下都使用了基于模型的方法和无模型的方法,但随着CPS中的复杂性和模型不确定性的增加,后者越来越流行。因此,在本文中,我们提出了针对CPS的基于Koopman操作员的无模型网络检测 - 隔离方案。该算法对其训练使用有限的系统测量结果,并生成实时检测式隔离标志。此外,我们提出了一个模拟案例研究,以检测和隔离插件电动汽车锂离子电池系统中的驱动和传感器攻击。
以可持续的方式设计和开发人工智能 (AI) 的需求促使研究人员、机构和组织制定 AI 伦理建议。尽管这些建议涵盖了各种主题并针对不同的受众,但它们都假设 AI 伦理为设计师提供了可应用于其工作的可推广基础。我们认为,当前道德准则的影响力仍然不大的原因之一可能是它们所代表的应用伦理的概念。我们讨论生物伦理作为衡量 AI 伦理中采用的元伦理和方法论方法的参考点,并提出,如果通过采用旨在提高人类行为质量和保障其预期结果的研究领域的工具来丰富资源,AI 伦理可以变得更加方法论扎实,实质上更具影响力。我们认为对此有用的方法是系统理论、安全研究、影响评估方法和变革理论。
本手册旨在扩展并提供有关在交通运营环境中使用的系统和相关资产管理的一般信息和指导,以支持 FTA 交通资产管理 (TAM) 规则。它提供了一个框架,概述了系统理论概念并定义了特定类别和类型的交通系统,以促进交通系统资产管理实践的一致性。提供实用信息以帮助交通运营商清点系统资产并确定整个系统生命周期中所需的活动和投资,以从系统中获得最大价值。本手册及其任何建议都不是 FTA 要求;但是,该文件澄清了相关的现有 FTA 国家交通数据库 (NTD) 资产清单模块 (AIM) 报告要求,并指出了 FTA 法规与此处讨论的资产管理实践相交的地方。
科学正逐渐失去公众以前对它的尊重。从公众的角度来看,应用于核能、基因工程等社会问题以及信息、经济和股票市场系统等复杂的社会技术设施的科学方法往往远远达不到标准。这反过来又导致人们对科学的不满,认为科学不适合如此复杂的社会和道德问题。为人类进步做出巨大贡献的经典科学方法本身被认为不适合具有重大道德或伦理内容的问题。科学家和工程师必须通过开发适合他们所处的更广阔世界的新方法来应对这种信心的丧失。统一系统假说 (USH) 就是在这种更广泛的背景下提出的。大约四十年前,人们希望系统科学能够提供一条前进的道路。这种希望源于一般系统理论
任何量子系统都不能被视为完全与其环境隔离。在大多数情况下,感兴趣的系统与外部自由度之间的相互作用会深刻改变其动态,如开放量子系统理论所述。然而,工程环境可以转化为对某些量子信息任务有益的影响。在这里,我们展示了一个量子系统的光学模拟器,它耦合到一个任意且可重构的环境,该环境构建为一个复杂的量子相互作用系统网络。我们通过利用连续变量光学平台的压缩和纠缠关联,通过实验检索开放量子系统动力学的典型特征,如光谱密度和量子非马尔可夫性。这为在可重构环境中对开放量子系统进行实验测试开辟了道路,这些环境与量子信息、量子热力学、量子传输和量子同步等相关。