对于 5G-SER 项目任务 2 和 3,NREL 部署了一个开源 5G 通信平台,并通过多接入边缘计算和开放的 5G 无线接入网络构建了一个分布式控制系统,用于电网边缘控制(Rivera 等人2023 年)。任务 3 电网基础设施包括在实时数字模拟器上运行的模拟微电网组件。但是,为了完成任务 4,我们已将实时数字模拟器模型替换为集成电源硬件在环组件,包括光伏逆变器、电池储能以及关键和非关键负载,以执行先前任务中的测试套件,以使用 5G 无线控制重新验证物理设备的有效性。此外,任务 4 允许我们升级 OpenAirInterface (OAI) 5G 核心、此后称为 gNodeB 的蜂窝塔以及与 Celona 5G 系统集成的用户设备的系统软件组件。在任务 4 中,我们还升级了分布式控制软件,以实现运营自动化和电网弹性。
*Windows 中的 Copilot(预览版)在全球部分市场可用,并将随着时间的推移推广到更多市场。了解更多信息。具有商业数据保护功能的 Copilot 可供拥有 Entra ID 和已启用且符合条件的 Microsoft 365 许可证的用户免费使用。1 Copilot for Microsoft 365 单独出售,需要合格的批量许可证或订阅 - Microsoft Copilot for Microsoft 365 | Microsoft 365。2 单独出售。某些功能需要软件许可证。3 NFC 仅适用于仅支持 Wi-Fi 的 Surface Pro 10 配置。4 可通过 Surface Commercial 授权设备经销商获得替换组件。熟练的技术人员可按照 Microsoft 的服务指南在现场更换组件。可能还需要 Microsoft 工具(单独出售)。替换组件和服务选项的可用性可能因产品、市场和时间而异。请参阅 Surface 服务选项 - Surface | Microsoft Learn。打开和/或维修设备可能会造成触电、火灾和人身伤害风险以及其他危险。如果进行 DIY 维修,请务必小心。除非法律要求,否则维修期间造成的设备损坏不在 Microsoft 硬件保修或保护计划的涵盖范围内。5 系统软件会占用大量存储空间。可用存储空间可能会根据系统软件更新和应用的使用情况而发生变化。1GB = 10 亿字节。1TB = 1,000 GB。Surface.com/Storage 了解更多详情。6 功能可用性因市场而异,请参阅 aka.ms/WindowsAIFeatures。当设备上未提供或未启用适用于 Windows 的 Copilot 时,按下 Copilot 键将启动 Windows Search。7 电池续航时间因使用情况、网络和功能配置、信号强度、设置和其他因素而异。有关详情,请参阅 aka.ms/SurfaceBatteryPerformance。8 在特定市场,仅特定配置配备 39W Surface 电源。支持快速充电的是最低 45W 的 Surface 电源或额定功率为 45W 或更高的 USB Type-C PD 充电器(单独出售)。由 Microsoft 于 2024 年 2 月进行的测试。有关快速充电的详细信息,请参阅 - USB-C 和 Surface 快速充电 - Microsoft 支持。9 基于截至 2024 年 2 月 20 日对 Windows 笔记本电脑和 2:1 发布的规格进行比较。
这是政府客户对最先进的基于模型的系统工程系统模型的看法。该系统模型展示了使用基于模型的系统工程方法来创建架构结构、需求图、连接到外部分析工具的功能、逻辑和有时是物理模型的能力。这还展示了与其他工程学科的数据交换。在洛克希德马丁公司,我们正在扩展系统模型的边界,以提供全面、权威的真相来源。我们正在通过使用 Cameo 软件集成系统模型,以及使用 CATIA 模型的概念设计工程师来创建数字线程。这意味着系统工程师和概念设计工程师在同一个数字环境中协作,并能够集成其他经过验证的专有工具。我们正在消除孤岛,并意识到变化的直接影响。您在此处看到的蓝色方块代表洛克希德马丁公司的权威真相来源。我今天要讲的工作流程位于左侧。我们使用的达索系统软件工具位于顶部。
本文提供了一项长期研究的第一个结果,该研究旨在提高使用航天器等离子相互作用系统软件的电推进诱导的电动推进诱导航天器充电的数值建模技术的有效性。欧洲航天局Bepicolombo任务的前数值模型及其输出作为模型当前功能和局限性的基准示例。证明,代码可以通过模拟电推进系统,推进器生成的等离子体以及暴露于空间的航天器系统之间的动态相互作用来获得航天器充电平衡。通过比较不同的多环反应指数的模拟,显示了在自由扩展推进器等离子体中对电子冷却的物理描述的重要性。它特别突出了将整个等离子体视为等温的不足。具有数值和物理参数的仿真输出的变异性为未来设计建模的未来改进和对等离子体推进器诱导的充电过程的理解铺平了道路,通过将来与可用的旋转遥控器进行比较。
F-35 JPO 不同意评估开放的差异请求,并表示 F135 计划仍在开发中,F-35 JPO 正在努力在系统开发和演示阶段结束时满足或更改要求。F-35 JPO 部分同意我们关于 CSI 的建议,但仍计划与更新的国防部要求保持一致,并与承包商合作,在 2015 年 5 月之前符合国防部要求。对于已交付的发动机,F-35 JPO 将首先确定在将 F135 计划与当前国防部要求保持一致时是否发现重大漏洞,然后再采取适当行动。F-35 JPO 部分同意我们关于风险管理的建议,但承诺确保普惠公司识别、提升、跟踪和管理影响该计划的所有风险。F-35 JPO 不同意我们关于软件质量管理的建议,并指出软件开发达到了正确的产品软件水平,软件开发计划并未过时,并且 F135 推进系统软件经过了适当的测试。F-35 JPO 的评论并未完全解决我们建议的具体内容;因此,需要进一步的评论。
发射支持 作为 NASA 肯尼迪航天中心 (KSC) 地面探索系统计划的主要承包商,Jacobs 负责飞行器组件的开发和运营,包括集成、加工、测试、发射和回收。Jacobs 团队帮助 NASA 对 KSC 的设施和地面设备进行现代化升级,为发射太空发射系统 (SLS) 和猎户座载人飞船做准备,以支持 Artemis 计划,该计划旨在在 2024 年之前将人类送上月球。这项工作的例子包括对 600 万磅重的履带式运输车、380 英尺高的移动发射器和 39B 发射台的升级。发射团队已经完成了 Artemis I 太空港指挥和控制系统软件的开发,并完成了 SLS 和猎户座发射的飞行硬件的组装、集成和最终测试和检查。Jacobs 团队还为各种商业太空公司提供技术和工程支持,包括洛克希德马丁、波音、诺斯罗普格鲁曼和内华达山脉。
空气泄漏是建筑物内能源消耗的重要驱动因素,在某些情况下是供暖和制冷负荷的最大驱动因素。该技术通过使用改进的鼓风机门加压建筑围护结构,然后分配雾化的无毒水基密封剂,该密封剂会自动吸入泄漏处,从而密封建筑围护结构。系统软件监控空间的温度、气压和湿度,同时控制密封剂的分配并实时记录进度。在部署自动化系统之前,所有完成的水平表面以及不应密封的开口都将被覆盖。然后对空间加压,无线网状网络控制喷嘴阵列,并通过跟踪建筑物泄漏的空气来分配密封剂。密封剂颗粒是超低挥发性有机化合物 (VOC),不会释放气体,它们会逐渐堆积在一起,将围护结构泄漏封闭到系统软件指定的程度。该系统会创建一个数字记录,跟踪处理前后的空气泄漏情况。密封程序完成后,可在 30 分钟内重新进入该空间。
Ada 在旗舰军事计划中的成功直接归功于 Ada 在其整个发展过程和连续标准(1983、1995、2005、2012 以及即将推出的 2022)中始终注重可靠性和可维护性,这是其他编程语言所无法比拟的。这一重点与当今军事系统软件的开发至关重要。随着所有功能数字化的提高,软件的复杂性和重要性也随之增加,这可能导致灾难性的故障(例如,1997 年,宙斯盾导弹巡洋舰 USS Yorktown 在其远程数据库管理器软件 3 中出现一个除以零的错误后失去了对其推进系统的控制)。网络战的加剧和武器系统对软件的依赖日益增加,加剧了这些担忧。前者增加了关键软件漏洞被敌人发现和利用的可能性:2007 年的 Orchard 4 行动展示了如何通过网络手段压制敌人的防空系统,这可能是未来众多行动中的第一个。随着下一代空中优势 5 或英国暴风雨 6 等系统的开发和部署,后者可能会增加一个数量级。
F-35 JPO 不同意评估未决变更请求,并表示 F135 项目仍在开发中,F-35 JPO 正在努力在系统开发和演示阶段结束时满足或更改要求。F-35 JPO 部分同意我们关于 CSI 的建议,但仍计划与更新的国防部要求保持一致,并与承包商合作,在 2015 年 5 月之前与国防部要求保持一致。对于已交付的发动机,F-35 JPO 将首先确定在使 F135 项目与当前国防部要求保持一致时是否发现重大漏洞,然后再采取适当行动。F-35 JPO 部分同意我们关于风险管理的建议,但承诺确保普惠公司识别、提升、跟踪和管理影响项目的所有风险。 F-35 JPO 不同意我们关于软件质量管理的建议,并指出软件开发已达到正确的产品软件水平,软件开发计划并未过时,F135 推进系统软件也经过了适当的测试。F-35 JPO 的评论并未完全解决我们建议的具体内容;因此,需要进一步评论。
用于数字数据处理和分析的电子设备,即包括用于测量和处理电信号的高频记录器和用于数据采集、数据可视化和频域变换的信号发生器的测量系统以及信号发生器;用于数字记录、传输和再现声音和图像的设备,即用于电视和广播演播室的数字混音台、数字收音机和录音机、包括机顶盒和数字数据压缩器/解压缩器的数字家庭影院系统;数字数据和信号处理系统,即微处理器模块和数字信号处理器模块;空白磁性数据载体和空白磁性数据记录载体;空白光学数据载体和空白光学数据记录载体;空白机械数据载体和空白机械数据记录载体;用于分析、处理、生成和可视化数字信号(例如声音、图像和测量数据)的处理器和操作系统的计算机软件;电子元件,即可编程逻辑半导体和微处理器;用于开发信号和数据处理系统的计算机软件和计算机硬件;以及用于开发信号和数据处理系统软件和硬件的计算机软件和计算机硬件(美国 CLS. 21、23、26、36 和 38)。