为改进储能系统充放电策略,提高储能系统经济性,本文提出一种基于增强鲸鱼算法的新方法。考虑到标准鲸鱼算法在高维多目标优化中容易陷入局部最优,本研究引入混沌映射和个体信息交换机制来解决这一问题。该算法通过包围和气泡搜索探索不同储能设备位置和容量的最优配置,评估各种优化多目标函数。此外,该算法改进了系统运行模型和储能配置模型,以分析储能系统年平均收益为目标函数。模型测试结果表明,该算法使储能系统容量衰减更缓和,运行时间延长至3124天,储能系统全生命周期收益高达1821623.68元。此外,无论问题的复杂程度如何,我们的算法都表现出很高的效率,具有最短的测试时间(68.36 秒)和快速优化(每个周期 0.031 秒)。
图表目录 图 1:组织结构图。 ................................................................................................................ 16 图 2:识别功能危害、故障模式和缓解措施的 10 步法。 ...................................................................................................... 63 图 3:安全风险评估流程 ...................................................................................................... 71 表格目录 表 1:第 1 卷封面 ............................................................................................................. 13 表 2:第 1 卷修订记录 ...................................................................................................... 14 表 3:现场调查评估。 ...................................................................................................... 30 表 4:飞行前组装和功能检查。 ............................................................................................. 32 表 5:第 2 卷封面 ............................................................................................................. 35 表 6:第 2 卷修订记录 ............................................................................................................. 36 表 7:UA 物理特性描述 ................................................................................................ 38 表 8:UA 性能特性描述 ................................................................................................ 39 表 9:UAS 环境限制
背景 北美大容量电力系统是有史以来最复杂的机器之一。该系统横跨数千英里,通过数百万个离散控制点将数千台发电机连接到数百万终端用户。该系统每天向客户提供大量能源。如果系统未在定义的操作参数内运行,则能量可能会被释放并导致严重的设备损坏甚至大面积停电。尽管该系统有许多自动控制系统来平衡每个时刻的负载和发电量,并在设备或设施超出设计参数运行时保护公共安全,但该系统需要人类以安全稳定的方式对其进行操作。NERC 可靠性标准旨在确保电力系统的运行能够承受任何单一干扰(有时是多个干扰),而不会导致系统的连锁故障。NERC 运营政策序言指出:
表格表 表 1:第 1 卷封面................................................................................................................ 13 表 2:第 1 卷修改记录.................................................................................................... 14 表 3:现场调查评估....................................................................................................... 30 表 4:飞行前组装和功能检查。 ................................................................ 32 表 5:第 2 卷封面 .......................................................................................................... 35 表 6:第 2 卷修订记录 ................................................................................................ 36 表 7:UA 物理特性描述 ............................................................................................. 38 表 8:UA 性能特性描述 ............................................................................................. 39 表 9:UAS 环境限制描述 ............................................................................................. 39 表 10:UA 构造描述 ............................................................................................. 40 表 11:UA 电力系统描述 ............................................................................................. 41 表 12:UA 推进系统描述 ............................................................................................. 43 表 13:UA 燃油系统描述 ............................................................................................. 44 表 14:UA 飞行控制系统描述 ................................................................................ 45 表 15:UA 导航系统描述 ............................................................................................. 47 表 16:DAA 系统描述 ............................................................................................. 48 表 17:CU 描述 ............................................................................................................. 49 表 18:C2链路描述 ................................................................................................................ 51 表 19:通信描述 ...................................................................................................... 52 表 20:起飞和着陆机制描述 ...................................................................................... 53 表 21:紧急恢复和安全系统描述 ................................................................................ 54 表 22:外部照明描述 ...................................................................................................... 55 表 23:有效载荷描述 ...................................................................................................... 57 表 24:地面支持设备描述 ............................................................................................. 58 表 25:维护描述 .............................................................................................................59 表 26:备件采购说明 ...................................................................................................... 60
完整文档审查和更新。纳入完整 CAP 722 文档系列审查中的缩写和术语,引入第 16 条:模型飞机俱乐部和协会框架内的 UAS 运营,并与 UAS 实施条例 (EU) 2019/947 的新可接受合规方式和指导材料保持一致,该条例保留于《2018 年欧洲联盟(退出)法案》下(并在英国国内法中进行了修订)。
摘要:一种简单的电池操作优化方法试图最大化短期利润。然而,事实证明,这种方法无法优化长期盈利能力,因为它忽略了电池退化。由于电池在其使用寿命内可以执行的循环次数有限,因此最好只在利润较高时操作电池。研究人员已经使用各种策略来限制电池的使用,以减少短期收益以换取长期利润的增加,从而解决了这个问题。确定这种操作限制是文献中很少讨论的一个主题。人们通常会将退化影响任意量化为短期运行,这已被证明会对长期结果产生广泛的影响。本文对短期运行的不同退化控制方法进行了严格的审查。介绍了文献中发现的不同实践的分类。指出了每种方法的优缺点,并评论了未来对这一主题的可能贡献。最常见的方法是在模拟中实现的,用于演示目的。
1. 服务供应商须就民航处总部及北机场控制塔安装的新空中交通管理系统的运作准备情况及用户友好性进行现场评估(下称“评估”),详情载于下文第 2.2 至 2.6 段(第 2.1 节)。 2. 服务供应商须就新空中交通管理系统的稳健性、安全性、完整性、稳定性、可靠性、可维护性、可用性和运作可持续性、与其他子系统/系统的整合,以及在系统设计使用寿命内于不间断的航空交通管制环境下运作进行运作准备情况审查(第 2.2 节)。 3. 服务供应商应评估人机界面 (HMI) 的有效性和相关可用性,例如系统/控制器功能的用户友好性、系统的人体工程学设计、影响不同用户组(即 ATC 操作人员、系统支持和工程人员)的人为因素,以有效运行和控制系统,以支持目前每天约 1,200 次航班起降和 700 次飞越航班的空中交通运营,以及到 2030 年的预计交通增长(第 2.3 节)。 4. 服务供应商应评估系统扩展能力与预计的空中交通增长相称(第 2.4 节)。 5. 服务供应商应在进行评估时考虑政府提供的安全案例报告,以进行第三方安全评估,并重点验证新的 ATMS 及其软件是否已做好操作准备并可安全用于 ATC 运营。服务供应商应提供调查结果和切实可行的建议,以解决评估中出现的安全问题(第 2.5 节)。 6. 服务供应商须评估系统是否符合相关的国际民航组织标准及建议措施 (SARPS) 和国际软件开发标准 (第 2.6 节)。 7. 服务供应商须与民航处有关人员会面,并配合民航处在进行评估期间向民航处及其承办商索取支持文件 (包括安全案例报告及安全文件) (第 2.7 节)。 8. 服务供应商须提交的报告须包括但不限于有关新 ATMS 的运作准备就绪情况及人机界面的有效性的专业结论,以及务实的建议及支持理由。评估中作出的所有假设均须与政府讨论及获认可,并在报告中清楚列明 (第 3.5 节)。
1. 服务供应商须就民航处总部及北机场控制塔安装的新空中交通管理系统的运作准备情况及用户友好性进行现场评估(下称“评估”),详情载于下文第 2.2 至 2.6 段(第 2.1 节)。 2. 服务供应商须就新空中交通管理系统的稳健性、安全性、完整性、稳定性、可靠性、可维护性、可用性和运作可持续性、与其他子系统/系统的整合,以及在系统设计使用寿命内于不间断的航空交通管制环境下运作进行运作准备情况审查(第 2.2 节)。 3. 服务供应商应评估人机界面 (HMI) 的有效性和相关可用性,例如系统/控制器功能的用户友好性、系统的人体工程学设计、影响不同用户组(即 ATC 操作人员、系统支持和工程人员)的人为因素,以有效运行和控制系统,以支持目前每天约 1,200 次航班起降和 700 次飞越航班的空中交通运营,以及到 2030 年的预计交通增长(第 2.3 节)。 4. 服务供应商应评估系统扩展能力与预计的空中交通增长相称(第 2.4 节)。 5. 服务供应商应在进行评估时考虑政府提供的安全案例报告,以进行第三方安全评估,并重点验证新的 ATMS 及其软件是否已做好操作准备并可安全用于 ATC 运营。服务供应商应提供调查结果和切实可行的建议,以解决评估中出现的安全问题(第 2.5 节)。 6. 服务供应商须评估系统是否符合相关的国际民航组织标准及规例和国际软件开发标准 (第 2.6 节)。 7. 服务供应商须与民航处有关人员会面,并配合民航处在进行评估期间向民航处及其承办商索取支持文件 (包括安全案例报告及安全文件) (第 2.7 节)。 8. 服务供应商须提交的报告须包括但不限于有关新 ATMS 的运作准备就绪情况及人机界面的有效性的专业结论,以及务实的建议及支持理由。评估中作出的所有假设均须与政府讨论及获认可,并在报告中清楚列明 (第 3.5 节)。