AFWCF 活动支持空军的核心功能。为支持核心功能,AFWCF 活动提供维护服务、武器系统部件、基地和医疗用品以及运输服务。营运资金对于我们空中和太空资产的准备和可持续性以及我们在全球和任何战区部署部队以支持 OCO 和国家军事战略要求的能力至关重要。维修站提供维持全球部队运作所需的设备、技能和维修服务。供应管理活动采购和管理消耗品和可维修备件库存,以保持部队结构的所有要素随时待命。运输提供了全球参与愿景的全球机动性要素。AFWCF 活动直接或间接地为作战人员提供满足任务能力要求所需的关键服务。
为支持空军核心职能,AFWCF 活动提供维护服务、武器系统部件、基地和医疗用品以及运输服务。营运资金对于我们的空中、太空和网络资产的准备和可持续性以及我们在全球和任何战区部署部队以支持海外行动和国家防御战略利益的能力至关重要。维护站提供设备、技能和维修服务,使部队能够在全球范围内运作。供应管理活动采购和管理可消耗和可维修备件库存,以支持所有部队结构随时待命。USTRANSCOM 是国防部在和平和战争期间管理国防运输系统 (DTS) 的唯一机构。营运资金活动直接和间接地为作战人员提供满足全球任务能力要求所需的关键服务。
CVMS 专为机载环境而设计,可轻松与其他飞机系统集成。由于每个单元都由两个 115VAC 飞机电源供电,因此数据可靠性和完整性得到增强,并且即使系统部件出现故障或物理损坏也能继续运行。以太网分布式交换机与小组摄像头一起安装,有助于最大限度地减少布线,并降低由此产生的线束的重量、成本和复杂性。由于网络通信和数据共享是通过成熟的光纤网络处理的,因此连接简单、可靠,并且完全不受电磁效应 (EME) 和其他飞机系统干扰的影响。系统的扩展很简单,只需在任何光纤以太网链路中添加另一个分布式交换机及其摄像头即可。
AFWCF 活动支持空军的核心功能。为了支持核心功能,AFWCF 活动提供维护服务、武器系统部件、基地和医疗用品以及运输服务。营运资金对于我们空中和太空资产的准备和可持续性以及我们在全球和任何战区部署部队以支持 OCO 和国家军事战略要求的能力至关重要。维修站提供维持全球部队运作所需的设备、技能和维修服务。供应管理活动采购和管理消耗品和可修复备件库存,以保持部队结构任务的所有要素准备就绪。运输为全球参与愿景提供了全球机动性要素。AFWCF 活动直接或间接地为作战人员提供满足任务能力要求所需的关键服务。
复杂、昂贵且对飞行至关重要的变速箱和相关传动系统部件是旋翼机性能和安全的关键。计算测试(在数字环境中运行高保真传动模型)有望缩短测试真实设备所需的时间。“如果成功,潜在的回报是让旋翼机行业能够更快地实施新的变速箱技术,”NASA 格伦研究中心驱动系统技术负责人 Timothy Krantz 博士解释道。“实验工作需要很长的准备时间,如果你能用分析工作来支持它,让你了解事情为什么会这样,那么你就会更快地对事情更有信心。”同样的理解可以微调旋翼机健康和使用监测系统 (HUMS) 生成的状态指标 (CI)。“我们使用大量基于物理的模型来输入我们的 HUMS 和基于条件的维护 (CBM) 系统,”美国陆军航空应用技术部门维护技术领域的航空航天工程师 Chris Lyman 指出
摘要:本研究涉及部分基于合成传感器的空气数据系统 (ADS) 的安全性分析。ADS 专为小型飞机运输 (SAT) 社区设计,适用于未来的无人机和城市空中交通应用。ADS 的主要创新在于使用合成传感器代替传统叶片(或传感器)来估计流动角(攻角和侧滑角),而压力和温度则直接用皮托管和温度探头测量。由于空气数据系统是安全关键系统,因此需要进行安全分析,并将结果与飞机集成商要求的安全目标进行比较。本文介绍了应用于部分基于合成传感器的安全关键系统的系统安全评估的常见航空程序。统计估计了 ADS 子部件的平均故障间隔时间,以评估 ADS 功能的故障率。所提出的安全分析还有助于识别最关键的空中数据系统部件和子部件。还确定了为实现非冗余架构的适航安全目标而可能填补的技术差距。
在可靠性分析中,主要有两种方法可以改进不可修复系统的设计。这两种方法是:(i)缩减法,该法假定可以通过将一组部件的故障率降低因子ρ(0 < ρ < 1)来改进系统;(ii)冗余法,实际上该法又分为多种冗余方法,如热冗余、温冗余、冷冗余和不完全开关冗余的冷冗余[1]。冗余和缩减方法也可用于改进可修复系统。此外,可通过将某些系统部件的修复率提高因子σ(σ > 1)来改进可修复系统[2]。对于最小尺寸和重量过大的系统,使用冗余法可能不是一种实用的解决方案[3]。因此,出现了可靠性/可用性等价概念。在这种概念中,按照减少或增加方法设计的改进系统必须等同于按照指定的冗余方法之一设计的改进系统。也就是说,使用这个概念,可以说系统性能可以通过替代设计得到改善[4]。在这种情况下,不同的系统设计
增加了人们对电动汽车的兴趣。然而,评估哪一个是电动汽车部件的最佳选择通常需要进行一系列实验测试,这可能非常昂贵,而且不像工程项目那样充分。因此,本文提出了一种基于 RFLP 方法的方法,该方法可以帮助设计人员在电力推进系统的预设计过程中选择电动汽车动力传动系统部件的最佳配置,从而降低与实验室测试台或真实电动汽车上的物理实验相关的成本。本文的目的是提供一种计算工具,可以虚拟模拟设计的电力推进系统的行为,从而有助于解决电池供电汽车领域最常见的问题。本文考虑的案例研究是电动踏板车的动力传动系统。这项工作的第一步是定义模拟模型,以模拟动力传动系统的车辆性能和能量消耗。第二步,这些模型通过安装在意大利国家研究委员会 Istituto Motori 实验室的物理电力传动系统实验进行参数化和验证。评估模型的验证允许对各种电力传动系统的不同替代配置进行模拟测试
装配线工艺规划通过将设计信息转换为装配集成序列,将产品设计和制造连接起来。装配集成序列定义了装配过程中飞机系统部件的安装和测试优先级。从系统工程的角度来看,此活动是复杂系统集成和验证过程的一部分。在本文中,现代飞机的复杂性是通过根据能量流、信息数据、控制信号和物理连接对飞机系统相互作用进行分类来定义的。在装配线规划的早期概念设计阶段,优先任务是了解这些产品复杂性,并生成满足设计系统功能和设计要求的安装和测试序列。本研究提出了一种考虑物理和功能集成的初始装配工艺规划新方法。该方法利用基于可追溯RFLP(需求、功能、逻辑和物理)模型的系统工程概念定义飞机系统交互,并通过结构化方法生成装配集成序列。所提出的方法在工业软件环境中实施,并在案例研究中进行了测试。结果显示了所提出方法的可行性和潜在优势。关键词:飞机系统装配,装配工艺规划;复杂系统集成;RFLP建模
摘要 — 本文详细介绍了用于机载风力涡轮机系统的最小重量输入串联输出并联结构双有源桥 (DAB) 转换器的设计、实现和实验验证。DAB 转换器的主要功率元件,特别是桥式电路、主动冷却高频变压器和电感器以及冷却系统,这些元件对系统总重量影响很大,其设计和实现基于多目标考虑,即考虑重量和效率。此外,该设计包括实现全功能原型所需的所有考虑因素,即它还考虑了辅助电源、系统稳定运行的控制(还包括输入滤波器)、在指定的工作范围内以及启动和关闭程序。这些考虑因素显示了各个系统部件之间的复杂相互作用,并表明需要全面的概念化才能实现可靠的最小重量设计。实验结果验证了所提出的设计程序,该程序可实现轻量级 DAB 硬件原型,额定功率为 6 .25 kW。原型重量为 1 .46 千克,即功率重量比为 4 .28 kW/kg(1 .94 kW/lb),最大满载效率为 97 .5%。索引术语 — 航空航天电子、机载风力涡轮机 (AWT)、直流-直流功率转换器、电力电子、可再生能源、风力发电。