工作条件 -10T60,90% RH 无凝结 *-25T60,90% RH 无凝结 *-25T65,90% RH 无凝结。;最大。功率可通过继电器切换,限制为 1 A 电阻,1 A 电感,cos ϕ = 0.4,1(1),符合 EN 60730-1 存储条件 -20T70,90% RH 无凝结 *-30T70,90% RH 无凝结 保护等级 IP20,IP40 仅前面板 / UL:1 型环境污染正常等级符合。防触电保护,集成在 I 类和/或 II 类电器中 绝缘材料的 PTI 250 V 绝缘部件上的应力周期长 动作类型 1C 断开或微动开关类型 微动开关 耐热和防火类别 D (UL94 - V0) 电压浪涌免疫类别 1 老化特性(工作小时数) 80,000 次。自动操作周期 100,000(EN 60730-1),30.000(UL873) 软件类别和结构 A 类 该设备不是为手持式设计的,应根据参考标准的要求安装在配电盘内。*:具有扩展温度范围的版本:PCO1000CX0、PCO1002CX0、PCO1MP0CX0。警告:对于易受强烈振动(1.5 毫米峰峰值正弦波,10-55 Hz)的应用,建议将连接到 pCO XS 的电缆夹在距离连接器约 3 厘米处。
移动性:自主性、稳健性、紧凑性、速度、自由度、易用性……低成本、可集成的导航,能够抵御 GPS 信号丢失,适用于弹药、无人机和机器人、建筑物内的战斗机……
基于身份的加密(IBE)是公共密钥加密的概括,其中公钥可以是任意字符串,例如名称,电话数字或电子邮件地址。用户的秘密密钥只能由可信赖的机构(称为密钥生成中心(KGC))生成,该键将其主秘密密钥应用于用户自身身份验证后用户的身份。Shamir [34]提出了IBE的概念,以简化公共密钥和证书管理。自Boneh和Franklin [10]提出的首次意识到,在过去的二十年中,进行了重大研究[1、7、7、8、12、17、18、21、22、25、36、37],从不同假设中构建了各种IBE方案。最近,为了预言量子计算机的攻击,量词后加密术,尤其是基于晶格的密码学,成为流行的研究方向。在此过程中,我们专注于基于晶格的ibe。
在可持续的城市空间利用率和碳中立性的背景下,这项研究系统地探索了2005年至2020年中国的城市形式与碳排放之间的关系。使用了来自260个城市的人为CO 2数据的夜灯和开源数据清单来测量城市形式和碳排放,探索了城市形式对碳排放的阈值效果,并探索了工业多样性和工作居住不足的影响。研究结果表明,首先,随着城市形式变得紧凑,建筑区域和城市内的碳排放均显示出减少然后增加的趋势。在中小型城市中,城市紧凑性倾向于减少碳排放,而在大型城市和大型城市中,更紧凑的城市形式会增加碳排放。此外,在工业多样性高且工作居住不平衡的城市中,更紧凑的城市形式有助于减少碳排放。为了优化城市紧凑性的减少碳益处,我们的研究提供了城市规划师的综合计划的见解,以将城市形式与生产和住宅考虑相结合。
量子密钥分发 (QKD) 允许两个用户之间以无条件的安全性进行密钥交换。要广泛部署 QKD,低成本和紧凑性是高性能的关键要求。目前,大多数 QKD 系统都依赖于体强度和相位调制器来生成具有精确定义的幅度和相对相位差的光脉冲 - 即将信息编码为信号状态和诱饵状态。然而,这些调制器价格昂贵且体积庞大,从而限制了 QKD 系统的紧凑性。在这里,我们提出并通过实验演示了一种新颖的光发射器设计,通过以 GHz 时钟速度生成强度和相位可调的脉冲来克服这一缺点。我们的设计通过采用直接调制激光器结合光注入锁定和相干干涉,消除了对体调制器的需求。因此,该方案非常适合小型化和光子集成,我们实施了原理验证 QKD 演示以突出潜在应用。
)在重叠群开始时放大残留物。将紧凑性设置为不紧凑的侧面面板,以便您可以看到每个读取的跟踪数据。单击侧面面板顶部的查找冲突按钮,或按Space键查找读数之间存在分歧的第一个位置;您也可以使用','和'。在冲突之间来回移动的密钥(见图7)。
摘要。晶格上的基本加密和签名在速度和关键大小方面与其经典同行具有可比的效率。但是,即使在理想的晶格和随机的Oracle模型(ROM)上实例化,在紧凑性方面,基于身份的加密(IBE)在紧凑性方面也差得多。这是因为用于提取用户秘密密钥的基本预定算法需要巨大的公共参数。在这项工作中,我们通过引入各种优化来指定一个紧凑的ibe Intantiatiation,以供实际使用。具体来说,我们首先提出了一个修改后的小工具,使其更适合实例化IBE的实例化。然后,通过合并我们的GAD-GET和非球形高斯技术,我们提供了一种效率的预映射算法,基于该算法,我们在理想的晶格上提供了紧凑的ibe的规范。最后,提出了两个参数集和一个概念实现的证明。鉴于基于晶格的密码学在基于晶格的密码学中的前样品采样算法的重要性,我们认为我们的技术也可以应用于其他高级加密方案的实际实例化。
一种重要的材料正在改变光学芯片的工作方式,使其更小,更快,更高效:薄膜硅锂(TFLN)。它为光和电信号如何相互作用提供了出色的属性。这可以使关键组件(例如电气调节器和信号处理器)的无缝集成一个单一的芯片。因此,光学设备可以实现前所未有的紧凑性,效率和性能。
要在2050年实现气候目标,需要准确的能源系统优化(MIP)模型来帮助决策者制定投资计划。为了提高这些MIP模型的准确性,需要在时间和空间维度上进行高分辨率,以及有关能量发生器的运行能力的许多细节。但是,这会导致大规模模型,其中最佳解决方案无法在任何刻薄的计算时间内获得,甚至是使用最佳求解器的超级计算机。因此,研究人员经常寻求计算障碍和准确性之间的正确权衡。仍然忘记,从紧密度和紧凑性方面改善现有模型配方已经可以提高计算速度。如果LP - 放射率更接近MIP模型的凸壳,则配方的紧密度会发生。公式的紧凑性取决于约束矩阵中约束,变量和非零元素的(相对)数量。在我的演讲中,我想分享不同的方法来获取和证明紧密而紧凑的MIP模型,以改善大规模优化问题的计算障碍,并就我们如何自动进行更广泛的规模进行讨论,并就我们如何更自动地进行此操作。