要在2050年实现气候目标,需要准确的能源系统优化(MIP)模型来帮助决策者制定投资计划。为了提高这些MIP模型的准确性,需要在时间和空间维度上进行高分辨率,以及有关能量发生器的运行能力的许多细节。但是,这会导致大规模模型,其中最佳解决方案无法在任何刻薄的计算时间内获得,甚至是使用最佳求解器的超级计算机。因此,研究人员经常寻求计算障碍和准确性之间的正确权衡。仍然忘记,从紧密度和紧凑性方面改善现有模型配方已经可以提高计算速度。如果LP - 放射率更接近MIP模型的凸壳,则配方的紧密度会发生。公式的紧凑性取决于约束矩阵中约束,变量和非零元素的(相对)数量。在我的演讲中,我想分享不同的方法来获取和证明紧密而紧凑的MIP模型,以改善大规模优化问题的计算障碍,并就我们如何自动进行更广泛的规模进行讨论,并就我们如何更自动地进行此操作。
主要关键词