在DAC中反射率的挑战•高压或负载下的钻石,可以吸收紫外线和蓝色的光,从而阻止这些光谱区域。•需要强红色和红外光源或敏感探测器•测量入射辐射强度是一个挑战:不能除去样品•需要极好的光学与光束正常的光束对齐到样品
红外 (IR) 成像是用于制造样品质量控制测量的重要工具之一。标准红外成像技术使用直接测量,其中光源和检测器在红外范围内工作。由于红外光源或检测器的选择有限,可能难以达到特定的红外波长。在我们的工作中,我们基于量子成像技术进行间接红外显微镜检查。这种方法允许我们用红外光探测样品,同时将检测转移到可见光或近红外范围。因此,我们展示了不同放大倍数下硅芯片的红外量子成像,其中样品在 1550 nm 波长下探测,但检测在 810 nm 下进行。我们还分析了该技术的可能测量条件,并估算了执行样品质量控制检查所需的时间。
两种类型都可以使用内置的动态空白功能直接放置在垂直关闭门的门平面中。SG 17剂量输出可以放在移动的门边缘,以进行水平关闭的门。在后一种情况下,快速工作的AST函数将确保在关闭和打开期间选择合适的增益。(动态装置)即使光幕对环境光源具有高度的免疫力,建议避免直接暴露于阳光和手电筒或其他红外光源(例如其他光电传感器)的干扰。如果前盖或光窗帘的光学组件被污染,则必须用略微湿布清洁它们。请勿使用有机溶剂或洗涤剂。确保安装灯罩,以便在操作过程中机械稳定。由于系统的敏感性高,可能会检测到严重的降雨和雪。
摘要:锗键(GESN)是CMOS兼容的组IV材料。它的生长受到SN隔离的趋势和GESN层中缺陷的产生的困扰,当它在晶格不匹配的底物上生长时。到目前为止,据报道,在近中音红外光源和光电探测器的直接波段间隙中使用了薄的GESN。在这种交流中,我们报告了高质量的单晶GESN(〜1μm),其压缩应力(-0.3%)和Si基板上的GE缓冲液对GE缓冲液的低缺陷(-0.3%)的生长。然后将生长的GESN制成1.25μm宽度的基座波导。估计的传播损失为1.81 dB/ cm,弯曲损失为0.19 dB/弯曲,测量为3.74μm。在没有GE-O吸收峰在820和550 cm-1处,在最佳制造和测量条件下,提出的GESN波导可能支持超过25μm的波长的光传播。
摘要:红外量子吸收光谱是量子传感技术之一,通过可见光或近红外光子检测可估算样品的红外光学特性,无需红外光源或探测器,这一直是提高灵敏度和光谱仪小型化的障碍。然而,实验演示仅限于波长短于 5 µ m 或太赫兹区域,而尚未在通常用于识别化合物或分子的 1500–500 cm − 1(6.6 至 20 µ m)的所谓指纹区域实现。本文我们报告了指纹区域量子傅里叶变换红外 (QFTIR) 光谱的实验演示,通过该实验可以从用单像素可见光探测器获得的傅里叶变换量子干涉图中获得吸收光谱和相位光谱(复杂光谱)。作为演示,我们获得了硅晶片在 10 µ m (1000 cm − 1 ) 左右的透射光谱,以及合成氟聚合物片聚四氟乙烯在 8 至 10.5 µ m (1250 至 950 cm − 1 ) 波长范围内的复杂透射光谱,其中可以清楚地观察到由于 CF 键的拉伸模式而产生的吸收。这些结果为基于量子技术的新型光谱装置开辟了道路。
中海区域中的光谱学是必不可少的工具,用于识别各种领域的分子类型,包括物理,化学和医学科学。然而,传统的红外光源,探测器和黑体辐射的噪声一直是小型化和较高敏感性的红外光谱仪的障碍。量子量表镜检查,whusesvisibleandinfraredphotonpairsinquantandandstate,将注意力作为一种新的感应技术,可在可见范围内使用检测器进行红外光谱。然而,常规量子纠缠光源的带宽最多为1 µm或更小,这阻碍了宽带微调,这在光谱应用中很重要。在这里,我们已经意识到了一个超宽带的纠缠状状态,可见的 - infrared光子,波长为2至5 µm,并利用了特殊设计的非线性晶体,内部具有chi骨的螺栓结构。此外,我们使用超宽带量子纠缠的光子构建了非线性量子干涉仪,并使用硅制成的可见检测器实现了无机和有机材料的宽带红外光谱。我们的结果表明,量子红外光谱可以实现超宽带光谱测量值,并为使用量子纠缠光子的高度敏感,超紧凑的红外表量表铺平了道路。©2024 Optica Publishing Group根据Optica Open Access Publishing协议的条款
f NIRS 功能性近红外光学成像系统可测量人类受试者前额叶皮层的氧气水平变化。每个 f NIRS 系统均可在受试者进行测试、执行任务或接受刺激时实时监测大脑组织氧合情况,并允许研究人员在受试者执行认知任务时定量评估大脑功能(例如注意力、记忆力、计划和解决问题)。f NIRS 设备提供血红蛋白水平的相对变化,使用改进的比尔-朗伯定律计算得出。受试者在前额佩戴 f NIRS 传感器(安装在柔性带上的红外光源和探测器),可检测前额叶皮层的氧气水平并提供氧合血红蛋白和脱氧血红蛋白的实时值。它可以持续实时地显示受试者执行不同任务时的氧气变化。受试者可以坐在电脑前进行测试或执行移动任务。它与刺激呈现系统和 BIOPAC 的虚拟现实产品集成。功能强大的 f NIR 光谱成像工具可测量含氧和不含氧血红蛋白血液中的 NIR 光吸收率,并提供与功能性 MRI 研究类似的持续大脑活动信息。它消除了 f MRI 的许多缺点,为认知功能评估提供了一种安全、经济、无创的解决方案。该技术为研究人员提供了更大的研究设计灵活性,包括在复杂的实验室环境中工作,以及在非传统实验室位置进行实地研究。