研究材料与光的光谱相互作用的学科称为光谱学,我们可以从一个简单的问题开始:“光是什么?”。我们用眼睛观察到的光(以及我们看不见的光)是由于能量在空间中以电场和磁场的组合形式传播而产生的,称为电磁波。这种波可以用其波长来表征,可见光区域的光的波长范围从紫色区域的 400 nm 到红色区域的 700 nm。我们都熟悉彩虹的景象,如果彩虹的颜色在图中显示为波长垂直向下增加,那么红色以下是红外线,紫色以上是紫外线。这些区域无法用人眼探测到,但可以使用对这些波长敏感的合适仪器进行研究。对于钻石,我们会发现需要测量所有三个区域。
天文学的新多波长方法需要自然科学许多领域的科学家共同努力,因为需要完全不同的实验和理论技术来观察和解释来自光谱不同部分的辐射。按能量递减的顺序,光谱的主要细分为:伽马射线、X 射线、紫外线、可见光、红外线和无线电波。太空中粒子和磁场的测量也被认为是探索宇宙的主要工具。单是获取数据就需要运用来自实验物理学和工程学许多不同分支的人才。此外,这些数据不仅引起天文学家的浓厚兴趣,而且引起了理论物理学、化学、数学、地质学和地球物理学以及生物学等许多分支的研究人员的浓厚兴趣。因此,多波长方法也是一种多学科方法,而太空天文学是一种促进科学统一的活动。
分子光谱是分子与电磁辐射相互作用时的电子,振动和旋转激发的分析。它被广泛用作识别和表征材料定量和定性分析的分子的工具。摩尔的光谱是入射电磁辐射的测量吸收或发射。每个分子都为特定的光谱法产生独特的光谱,从而使光谱被用作分子的ngerprint。红外(IR)光谱法是一种光谱技术,它阐明了改变其偶极矩的分子的振动模式。1这些振动模式导致摩尔数在红外线区域吸收电磁辐射,该区域位于波数4000 - 400 cm-1的范围内。官能团在1500 cm - 1以上的峰区域中具有独特的吸光度,称为功能组区域。2
11. 测试方法摘要 11.1 碳在氧气流中燃烧转化为二氧化碳。 11.1.1 热导率测试方法——二氧化碳被适当等级的沸石吸收,通过加热沸石释放,并被氦气或氧气吹入色谱柱。洗脱后,在热敏电阻型电导池中测量二氧化碳的量。参考图 1。 11.1.2 红外线 (IR) 吸收,测试方法 A——二氧化碳的量通过红外线 (IR) 吸收来测量。二氧化碳 (CO 2 ) 吸收红外光谱中精确波长的红外能量。当气体通过传输红外能量的池体时,此波长的能量被吸收。所有其他红外能量都被精确的波长滤波器消除,不会到达检测器。因此,红外能量的吸收只能归因于 CO 2 ,其浓度通过检测器上的能量变化来测量。一个电池既用作参比室,又用作测量室。在一段时间内,对总碳(以 CO 2 表示)进行监测和测量。参见图 2。11.1.3 红外 (IR) 吸收,测试方法 B — 检测器由一个 IR 能量源、一个独立的测量室和参比室,以及一个用作平行板电容器一个板的隔膜组成。在样品燃烧过程中,CO 2 及其氧气载体流过测量室,而只有氧气流过参比室。来自 IR 源的能量穿过两个室,同时到达隔膜(电容器板)。部分 IR 能量被测量室中的 CO 2 吸收,而穿过参比室时则不会被吸收。这会造成到达隔膜的 IR 能量不平衡,从而使隔膜变形。这种变形会改变固定电容,产生电信号变化,该变化被放大以用于测量 CO 2 。在一段时间内,对总碳(以 CO 2 表示)进行监测和测量。参考图 3。
在对遥远的恒星或围绕它们运行的系外行星等暗淡物体进行成像时,相机必须以极低的噪声捕捉到每一个光子。超导相机在这两个标准上都表现出色,但在历史上并未得到广泛应用,因为它们的像素很少超过几千个,这限制了它们捕捉高分辨率图像的能力。一组研究人员最近用一台 40 万像素的超导相机打破了这一障碍,这种相机可以探测到从紫外线 (UV) 到红外线 (IR) 的微弱天文信号。这些超导相机捕获的每十亿个光子中,可能有不到十个是由于噪声造成的。由于这些探测器非常灵敏,因此很难将它们密集地排列而不造成像素之间的干扰。此外,由于这些探测器需要保持低温,因此只能使用少量电线将信号从相机传送到其温暖的读出电子设备。
电磁 (EM) 辐射光谱被划分为一些任意的频率区域(图 15-1)。光谱划分通常基于辐射的起源过程以及辐射与物质相互作用的方式。最有用的划分是电离辐射(X 射线、伽马射线和宇宙射线)和非电离辐射(紫外线 [UV] 辐射、可见光辐射、红外线 [IR] 辐射和射频 [RF] 波)。电离辐射和非电离辐射之间的划分通常被接受为波长 (λ) 约为 1 nm,在远紫外区域。当围绕稳定原子运行的电子被驱逐时,就会发生物质电离。所有元素的原子都可以电离,但只有伽马射线、X 射线、α 粒子和 β 粒子具有足够的能量来产生离子。由于离子是带电粒子,因此它们的化学活性比电中性形式更高。发生在
药物化学在药物原型开发过程中起作用,在这种情况下,它起源于新分子的合成以及表征过程。从这个意义上讲,一组分子一直在对其突出的药理活性产生兴趣,这是Tiosmicarbazonas的类别,在这里强调了其由tiazols组成的核心衍生物。因此,本研究的目的是合成可以呈现药理活性的这类分子的新药理剂。此外,它旨在优化噻唑化合物的合成过程,以及通过二氧化硅分析中的药代动力学特性的确定。作为一种方法,选择了超声合成,具有1:1化学计量比例,用于溶剂,将使用乙醇的使用产生为产品两种编纂的tiazols,例如TZ-03和TZ-04。收入的结果,值分别为70%和98.3%。与二氧化硅分析有关,评估与口服生物利用度和药代动力学表征有关,以及用于吸收,分布,代谢和排泄的数据。除此之外,还由红外线进行,以识别有关化合物组的特定频带。
本标准用于对涉及制造、检修、改装、安装、故障排除、维修和维护地面、机载和船用电子设备的非管理性工作进行评级,例如:无线电;雷达;声纳;密码;卫星;微波;微型计算机及外围设备;激光;红外线;工业 X 射线;海洋、航空和太空导航辅助设备;电视接收器;监视;以及类似设备。这项工作需要了解电子原理;能够识别不当操作、找出原因并确定纠正缺陷的最佳方法;以及拆卸、组装和调整电子设备的技能。这项工作包括使用手动和自动测试设备。这项工作可能需要使用个人计算机和大量软件包来编程或重新调整各种组件或系统、下载信息和检测设备缺陷。本标准取消并取代了 1981 年 2 月发布的《电子机械师工作评级标准 2604》。
• TRUTHS 卫星将被发射到高度约为 610 公里的极地非太阳同步轨道。TRUTHS 将测量整个地球:陆地、海洋、冰川和大气层,每 61 天至少访问一次地球上的每个区域。• TRUTHS 将拥有两种主要仪器:• 高光谱成像光谱仪 (HIS) 将连续测量从紫外线到红外线(320-2400 纳米)所有波长范围内的窄光谱带辐射,地球上的空间分辨率为 50 米;• 低温太阳绝对辐射计 (CSAR) 将测量入射太阳能并作为机载“黄金标准”。• TRUTHS 还将拥有一个机载校准系统 (OBCS),该系统将使用单色仪将阳光分解成不同的波长,以提供从 CSAR 到 HIS 的校准链路——该过程和参考标准模仿了泰丁顿 NPL 实验室在地面上使用的流程和参考标准。
项目描述:量子点(QD),例如硫元素QDS,是太阳能收集的出色候选者,因为它们能够吸收广泛的阳光,包括红外线,通常在常规太阳能电池中浪费。在我们最近的研究中与Argonne National Laboratory的散射科学家合作进行的研究中,我们证明了Chalcogenide QD铅在光激发时表现出快速,可逆的对称性变化,这会影响其吸收波长。此外,我们发现限制QD的配体材料也会影响这种对称性变化。在此项目中,我们将使用依从算计算来阐明配体在不同温度下如何影响QD对称响应对光激发的响应。了解这种对称变化机制将有助于确定最佳条件,包括配体物种,密度和温度,以进行有效的太阳能收集。