DNA 链之间的相互作用是细胞中许多基本过程的关键。DNA 寡核苷酸之间的杂交对于我们最灵敏的 DNA 检测方法至关重要,包括最先进的单分子技术。1–3 单分子技术通过提供有关生物反应和生理过程动力学的细节,丰富了生物分子研究,而这些细节在相应的批量测量中并不明显。在过去的几十年里,出现了强大的单分子传感和成像新方法。一个例子是基于荧光的单分子成像,它通过从高精度时间调制和单分子检测事件的积累中重建图像来克服衍射极限。4–7 其中,光激活定位显微镜
旋转过渡材料对于开发可拍照的设备具有吸引力,但它们的慢速材料转换限制了设备的应用。尺寸降低可以更快地切换,但是纳米级的光诱导动力学仍然鲜为人知。在这里,我们报告了一个飞秒光泵多模式X射线探针研究的聚合物纳米棒。同时使用X射线发射光谱和X射线衍射的结构跟踪自旋过渡顺序参数,我们观察到在〜150个飞秒范围内的低自旋晶格的光接头。高于A〜16%的光接头阈值,在分配给纳米棒中激活分子自旋开关的振动能量重新分布的孵育周期后,向高旋转期发生过渡。高于〜60%的光接头,孵育周期消失,过渡在〜50 picseconds之内完成,此前是弹性纳米棒的膨胀,响应于光启动。这些结果支持基于旋转材料的GHz光学切换应用的可行性。
更广泛的上下文电池供电的电动汽车是将运输集成到电网中的有前途的解决方案。但是,尚未广泛采用电动汽车的消费者,部分原因是成本较高,车辆行驶里程较小以及充电的不便。可以鼓励使用电动汽车的新电池化学的重要目标包括低成本,大型驾驶范围,许多周期和长架子。带有石墨阳极的电流,可充电的锂离子电池的能量密度太低,无法达到前两个目标,但是诸如硅等不同的阳极化学物质可以实现成本和范围目标。在硅阳极可以替代石墨阳极之前,仍然存在障碍,但是,由于静电期间硅体积较大及其高反应性表面的大量膨胀,这两者都会导致不可逆的容量损失。
这是以下文章的同行评审:Ficek M.,Dec B.,Sankaran K. J.,Gajewski K.,Gajewski K.,Tatarczak P.,Wlasny I.,Wysmolek A.,Wysmolek A.,Haenen K.,Haenen K.,Gotszalk T.,Bogdanowicz R.,Bogdanowicz R.,Bogdanowicz R.钻石增强碳纳米棒,高级材料界面,第1卷。8,ISS。 20(2021),2100464,已在https://doi.org/10.1002/admi.202100464上以最终形式出版。 本文可以根据Wiley使用自算版版本的条款和条件来将其用于非商业目的。 未经Wiley的明确许可或根据适用立法的法定权利的明确许可,本文可能不会增强,丰富或以其他方式转化为衍生作品。 版权声明不得删除,遮盖或修改。 该文章必须链接到Wiley在Wiley在线图书馆上的记录版本,并且必须禁止第三方通过平台,服务和网站提供任何嵌入,框架或以其他方式提供其文章或页面。8,ISS。20(2021),2100464,已在https://doi.org/10.1002/admi.202100464上以最终形式出版。本文可以根据Wiley使用自算版版本的条款和条件来将其用于非商业目的。未经Wiley的明确许可或根据适用立法的法定权利的明确许可,本文可能不会增强,丰富或以其他方式转化为衍生作品。版权声明不得删除,遮盖或修改。该文章必须链接到Wiley在Wiley在线图书馆上的记录版本,并且必须禁止第三方通过平台,服务和网站提供任何嵌入,框架或以其他方式提供其文章或页面。
摘要:一种通常称为心脏病发作的心肌梗塞(MI)导致心脏中心肌细胞(CMS)死亡。组织工程为MI治疗提供了有希望的策略,但是人类工程心脏组织(HECT)的成熟仍然需要改善。导电聚合物和纳米材料已掺入细胞外基质中,以增强心脏细胞之间的机械和电耦合。在这里,我们报告了一种简单的方法,将金纳米棒(GNRS)掺入纤维蛋白水凝胶中以形成一个GNR-纤维蛋白基质,该基质用作形成悬浮在两个柔性柱之间的3D Hect构建体的细胞外基质的主要组成部分。用GNR-纤维蛋白水凝胶制成的高h表现出成熟的标志物,例如较高的抽搐力,同步跳动活动,肌节成熟和比对,T型管网络的开发以及钙处理的改进。最重要的是,GNR小量可以在9个月内生存。我们设想带有GNR的HECT具有恢复梗塞心脏功能的潜力。
金纳米棒(Aunrs)由于表面等离子体共振的独特特征,最近在感应和检测应用领域受到了极大的关注。Aunrs的表面修饰是有效利用其特性的必要途径。在本文中,我们既专注于证明Aunrs表面功能化方法的最新进展,又要证明它们使用各种技术来改善感应性能。讨论的主要表面修饰方法包括配体交换,并有助于硫醇基团,层组装方法以及具有所需表面和形态的无机材料。涵盖的技术随后可用于使用这些功能化的aunr,包括色素感应,折射率感测和表面增强拉曼cacttrater的感应。最后,考虑了改善表面修饰的未来发展的前景,以改善感应性能。
一种制备具有手性形态的稳定无机纳米粒子的稳健且可重复的方法可能是这些材料实际应用的关键。本文介绍了一种制备四重扭曲金纳米棒的优化手性生长方法,其中使用氨基酸半胱氨酸作为不对称诱导剂。在半胱氨酸作为手性诱导剂、抗坏血酸作为还原剂的情况下,反复还原 HAuCl 4 后发现在单晶纳米棒表面形成了四个倾斜的脊。通过对晶体结构进行详细的电子显微镜分析,提出不对称性是由于初始纳米棒上形成了突起(倾斜脊)形式的手性面,最终导致扭曲的形状。半胱氨酸的作用是协助对映选择性面演化,密度泛函理论模拟的表面能支持了这一观点,表面能随着手性分子的吸附而改变。因此,R 型和 S 型手性结构(小面、梯田或扭结)的发展将不相等,从而消除了 Au NR 的镜像对称性,进而导致具有高等离子体光学活性的明显手性形态。
新的光学特性在光热疗法、比色传感、生物成像和光电子学中具有潜在的应用。[1–8] 在过去二十年中,随着 GNR 合成方法的不断改进,[9,10] 人们开发出了许多用于排列和组装 GNR 的技术,从而获得了新的光学特性。[11] GNR 具有纵向和横向表面等离子体共振 (LSPR 和 TSPR),当光的电场分别沿长度和直径方向取向时,会激发这些共振。LSPR 比 TSPR 更强烈,LSPR 的波长取决于纳米棒的长宽比,从而可以调谐到近红外光谱。 GNR 的取向可以选择性地激发 LSPR 或 TSPR,目前已通过拉伸聚合物薄膜[12–14] 静电纺丝聚合物纤维[15,16] 控制蒸发介导沉积[17,18] 模板沉积[19–23] 皱纹辅助组装[24] 机械刷[25] 和液晶分散[26–31] 等方法实现。尽管其中一些取向技术可以提供高度有序性,但利用施加的磁场或电场对分散在液体中的 GNR 进行动态取向的能力因其速度和可逆性而颇具吸引力。利用电场对 GNR 进行取向,
材料中,CNCs的排列起着至关重要的作用。到目前为止,已证明有几种有效的方法来排列CNCs,例如使用铸造蒸发法[6]、剪切力[7]、磁场[8]和电场。[9]除了上述方法所需的复杂装置或CNC薄膜的固有脆性外,最近出现了一种基于液体行为辅助策略的排列CNCs的新方法。[10]使用动态水凝胶体系来驱动CNCs的排列,其中CNCs的取向由外力产生。当纳米材料在空气干燥后相对位置固定时,就得到了颜色可调的CNC混合薄膜。另一方面,为了克服从天然原料中分离CNCs的问题,例如苛刻的条件或高能耗,[11]我们开发了一种新的可回收、选择性的碱性高碘酸盐氧化方法,从而可以高产率地制备PO-CNCs。 [12] 然而,PO-CNCs 上羧基含量相对较少,削弱了水凝胶前体中 PO-CNCs 的稳定性,并且由于许多其他溶解化合物的存在,可能导致 PO-CNCs 聚集,这也给将 CNCs 均匀嵌入潜在光学器件材料带来了普遍挑战。由于水凝胶中 CNCs 的取向依赖于剪切力,因此要求水凝胶具有较高的拉伸性和足够的韧性。由于缺乏有效的能量耗散机制,传统水凝胶通常机械强度差、拉伸性低。[13] 因此,人们已采用各种策略(包括静电相互作用 [14] 双网络结构 [15] 滑环连接 [16] 和疏水缔合 [17])进行交联和能量耗散,以提高水凝胶的性能。为了简化CNCs与聚合物基质之间的相互作用,避免所得光学材料中过多的变量,一种通过共价键交联的聚丙烯酰胺(PAAm)水凝胶具有高透明度和适用的机械性能等优势,是通过液体行为辅助法对PO-CNCs进行取向的有希望的候选材料。[18]中性水凝胶前体溶液可使PO-CNCs稳定存在。此外,其他光学材料,如金纳米棒(GNR),也可以适应这种水凝胶体系,其中表面等离子体共振(SPR)将诱导可见光区域的光吸收。[19]因此,这种水凝胶