看来,纳米级的第一批琴弦是由法国奥尔良大学的Marinobu Endo于1970年编写的。这些细丝的直径为7纳米,并通过蒸汽生长法制备。今天,Tsukuba的NEC实验室的IJIMA名称是1991年成功观察HR-TEM纳米管的第一个人,仍然是该领域的研究人员的首位。同时,旋转电子的自旋可以有两个方向。到目前为止,物理学家认为电子的四个可能状态彼此相等。这四个状态是从两个旋转状态的组合(在向上和向下的方向上)和两个状态获得电子旋转方向。同时,在莫斯科独立地,科学家成功地发现了微管,其长度与直径的比率低于Ijima的发现。俄罗斯人将这种物质命名为Barrelense。Ijima设法观察到的是一种多层纳米管,两年后,他成功地观察了单层纳米管。在1996年,赖斯的小组成功地制作了单层纳米管的并行堆栈,这为进一步研究一维量子物理学开辟了道路。
使用周期性边界条件在DFT框架中模拟了碳纳米管和带有双酚A衍生物的石墨烯表面。这样的化合物是环氧黛安树脂的组成部分,它们是飞机结构的重要复合材料。模拟结果允许人们指出,使用专门的交换功能Berland和Hyldgaard开发了用于解释弱范德华相互作用的hyldgaard,而不是DFT-D2方法。我们观察到复合物形成的能量取决于双苯酚A的二甘油乙醚官能团的方向,并通过碳材料的表面是平坦的,例如石墨烯,还是弯曲的,如纳米管。发现,对直径为1 nm的纳米管观察到最强的结合,对此,复合物的能量比二甲醇A的二甲基乙醚A上的复合物低65%。在纳米管的弯曲外表面上,根据电子密度的QTAIM分析,酯衍生物形成了更多的非共价相互作用,并且复合物形成的能量较低。
简介二氧化钛纳米管阵列 (TNA) 在生物医学领域的潜在应用已得到广泛认可。1-3 TNA 具有多种特性,可以满足生物医学需求,例如增强纳米表面与细胞之间的相互作用、药物包封和控制释放 2 以及亲水性纳米表面,可以防止细菌粘附。3 之前已广泛探索将抗菌药物加载到 TNA 中,目的是减少植入后手术,从而导致植入排斥。4 抗菌负载 TNA 的成功开发为将化疗药物加载到 TNA 上开辟了新的机会 5 ,这以前被认为是一个繁琐的过程,因为这些药物,尤其是基于铂的药物,6 对光敏感且致癌。顺铂 (CDDP) 是一种
碳纳米管 (CNT) 具有一组独特的性能,例如高电流承载能力、高热导率、机械强度和极大的表面积,18 这些特性使其可用于众多应用。现在可以高效地生长高纯度的块状和表面单壁纳米管 (SWNT) 9 13,因此许多应用的生产限制似乎已经得到克服。然而,仔细观察就会发现,对于纳米管森林的许多关键应用而言,现有的生长方法所生成的森林的面积密度和性能仍然低 1 2 个数量级。以用 CNT 取代集成电路中的铜互连线为例,这是半导体路线图的一个重要里程碑。14 16 只有当 CNT 互连线的电阻低于铜时,才会使用 CNT 互连线,而这需要 CNT 面积密度至少为 2 10 13 cm 2 才能降低由量子电阻引起的串联电阻。然而,迄今为止实现的 SWNT 最高密度仅为 7·10·11 cm2,7,17 21 低了 30 倍(图 1)。散热器也存在类似的问题。虽然单个纳米管的导热系数可能与金刚石实心棒相当,3 但是,如果纳米管森林只填充了可用横截面积的 3%,实际导热系数就会低 30 倍,用处不大。22,23 为了克服这些限制,我们需要完全茂密的森林。我们在此介绍了一种催化剂设计,用于生长超高密度纳米管森林,接近所需的 2·10·13 cm2 密度,甚至可以达到更高的密度。
在很大程度上,纳米级的流体运输在很大程度上是维珍领土。近年来,碳纳米管中的快速流[1-4]等新现象已经发布,或者在碳纳米管中的特殊离子转运[5],硝酸硼纳米管中的大渗透力[6]或纳米氧化石烯和石墨烯氧化物的高渗透[6] [7-9]。这些现象中的许多现象仍有合理化[10,11]。尽管在理论和数值方面进行了详尽的探索,但仍然缺乏实验输出,因为该领域的研究非常具有挑战性。然而,对纳米通道内流体运输的系统性理解,尤其是某种神秘的碳材料,是获得对纳米级级别发挥作用机制的基本见解的先决条件。的确,这些材料的流体特性对社会问题(如淡化和能量收集)产生了影响,这确实使许多希望寄希望了,因此对于确定其特定行为的物理起源至关重要。在这封信中,我们探索各种尺寸的个体碳纳米管(CNT)内部的离子传输,通常在数十个纳米范围内。,我们尤其将重点放在离子电导率及其对盐浓度的依赖性以及离子电流的波动上。我们报告了低盐浓度下电导的“不寻常”缩放行为,可以用碳表面上的氢氧化物吸附来解释。单个纳米管和实验设置。- 单个跨膜纳米管设备由此外,当前噪声的测量值强调了噪声幅度对表面电荷的密切依赖性,这表明表面吸附在离子传输的低频行为中起关键作用。结果显示,结果与硝酸硼纳米管(BNNT)的响应有很大不同,后者表现出相同的Crys-Salographich,但截然不同。
1 圣何塞州立大学信息系统与技术学院,美国加利福尼亚州圣何塞 95192 2 韩国科学技术院管理信息系统系,韩国大田 34141 3 伊尔迪兹技术大学电子与通信工程系,土耳其伊斯坦布尔 34349 4 明尼苏达大学医学院血液学、肿瘤学和移植医学系,美国明尼苏达州明尼阿波利斯 55455 5 斯坦福大学医学院神经病学和神经科学系,美国加利福尼亚州斯坦福 94305 6 斯坦福大学医学院精准健康和综合诊断中心,美国加利福尼亚州斯坦福 94305 7 明尼苏达大学信息学研究所,美国明尼苏达州明尼阿波利斯 55455 8 共济会癌症中心,美国明尼苏达州明尼阿波利斯 55455 9 MD 安德森癌症中心神经肿瘤学系德克萨斯大学系统中心,美国德克萨斯州休斯顿 77030 10 神经科学研究生项目,MD 安德森 UTHealth 生物医学科学研究生院,美国德克萨斯州休斯顿 77030 11 癌症生物学研究生项目,MD 安德森 UTHealth 生物医学科学研究生院,美国德克萨斯州休斯顿 77030 * 通信地址:emil-lou@umn.edu (EL);cbpatel@mdanderson.org (CBP);电话:+1-612-625-9604 (EL);+1-713-792-0778 (CBP);传真:612-625-6919 (EL);713-745-0387 (CBP) † 这些作者对本文的贡献相同。 ‡ 这些作者对本文的贡献相同。
摘要:二氧化钛纳米管阵列 (TNA) 纳米系统在药物输送应用中得到了广泛的讨论,它可为靶向癌症治疗中化疗药物的持续释放提供优势。本研究分析了顺铂化疗药物 (CDDP) 在 TNA (CDDP-TNA) 上的包封效率。本研究中使用的锐钛矿 TNA 纳米系统具有 25 θ 和 48 θ 的衍射角。使用主要功能标记酰胺 I 带 (N-H) 确定了 CDDP 在 TNA 上的分布和结合相互作用,并进一步捕获了 CDDP 从 TNA 中的缓释曲线。此外,CDDP-TNA 纳米系统具有良好的亲水性,可以促进 CDDP 从 TNA 纳米系统中有效释放。然而,需要使用聚合物涂层技术开发 CDDP-TNA 纳米系统的控释模型来支持目前的发现,特别是在靶向癌症治疗应用中。
锂离子电池(LIB)由于其高能量密度,较长的循环寿命,低自我放电速率和不效应而广泛用于新的能量车辆和电子设备中。1 - 4作为电池的关键组成部分,分离器不仅隔离阳极和阴极,以避免内部短路,而且还允许在整个多孔结构中运输液体电解质中的锂离子。5,6,如今,商业聚n分离剂,例如聚乙烯(PE),聚丙烯(PP)及其化合物,由于其出色的机械强度,良好的电型稳定性和合理的成本,通常用于LIBS中。7,8然而,它们的较差的热稳定性会导致分离器在较高的温度下容易收缩,从而导致雷和爆炸事故。此外,低电解质润湿性限制了高性能电池的发展。9,10
机械性能Young的多壁CNT模量〜1-1.2 TPA Young的单壁CNT绳索的模量〜1 tpa的单壁纳米管绳索〜60 gpa