扫描率。循环伏安法曲线将对称形状从0.005 V•s -1至0.1 V•S -1保持,表明电极材料的放大能力。由于法拉第反应时间不足以高扫描速率,特定电容随扫描速率的增加而降低。图5C显示了在不同电流密度下TN-MO-S的充电偏差曲线。几乎对称的三角形轮廓表现出电极的电容和可逆特征。
为了利用无机纳米管用于务实目的,其机械性能的表征成为一个相关问题。在本研究中,通过使用Stillinger-weber-weber类型的原子间潜能来获得几个直径WS 2纳米管和两个主要晶格方向的机械性能的一系列结果。根据实验结果获得了接近170 GPA的纳米管的年轻模量,而T多型的纳米管的130 GPa获得了,几乎不依赖于纳米管的直径。拉伸强度大至20 GPa(h扶手椅纳米管,接近实验中获得的值),而破裂点的应变达到接近0.24的值。研究了几种缺陷对机械性能的影响,结果表明,当缺陷在没有整个WS 2单位的情况下组成时,拉伸强度和破裂点会大大下降,并且裂缝变得比原始纳米管更脆。还研究了机械性能对温度的依赖性。
工业或个人用途会增加环境污染(例如水污染或二氧化碳产生)并且还会导致不利的健康影响(例如刺激、过敏反应或溶血问题)。 [6] 因此,必须找到一种环保且可持续的替代方案。Pickering 乳液以首次报道它们的科学家的名字命名,其特点是存在提供稳定性的界面活性粒子。 [7] 在油包水或水包油乳液的情况下,这些 Pickering 稳定剂会吸附在油/水界面上并发挥作用。 [8] 特别是,与传统的表面活性剂稳定体系不同,高胶体稳定性不是来自表面张力的降低,而是来自界面上物理屏障的形成。 [9] 纳米粒子的不可逆锚定可以通过考虑从两种不混溶液体界面解吸所需的高能量来解释。 [10] 因此,产生了强大的空间屏障,乳液具有很强的抗聚结、抗变形和抗奥斯特瓦尔德熟化能力,可以长时间有效地保护液滴。 [6]
这里,我们展示了透明导电和半规则库仑阻塞,可通过施加栅极电压进行调节,即使在超低温(T 基区 ≃ 15 mK)实验中也是如此。这是基于最近的发现,即可以使用半金属铋实现与平面 MoS 2 的室温欧姆接触:[38] 由于费米能级钉扎是由界面处金属和半导体态的杂化引起的,[39] 降低费米能级附近的接触态密度违反直觉地实现了可调谐性和透明导电。虽然(可能是基板引起的)无序仍然存在,但我们的数据表明接触处明显没有电荷陷阱,并且接触电阻很低。这代表着接触质量的显着改善。在低温极限 T ≤ 100 mK,我们观察到单能级传输的迹象。
在此情况下,我们最近建议使用四钌取代的多金属氧酸盐 (POM) Na 10 [Ru IV 4 ( β -OH) 2 ( µ -O) 4 (H 2 O) 4 ( γ -SiW 10 O 36 ) 2 ] (Ru 4 POM),它作为聚合物膜的防污剂表现出独特的行为。[3,4] POM 是 Mo、W 和 V 等金属的最高氧化态下的过渡金属氧化物。它们具有广泛的结构拓扑和多功能的化学和物理特性,特别是在催化应用方面[5],并且可以集成到广泛的功能支架 [6] 和薄膜中。[7] Ru 4 POM 具有突出的氧活性,这可以在水氧化过程中观察到[8],以及 H 2 O 2 催化歧化为 H 2 O 和 O 2 的过程中。 [9] 后一种过程很容易实现,不需要使用外部光/电触发器,也不需要调节 pH 值或温度,因此,只要将 Ru 4 POM 集成到小型设备或膜中,就可以很容易地利用它产生氧气泡。[10] 这些代表了一种有用的机械剂,有助于去除不可逆的污垢颗粒,也就是那些对传统膜清洗有抵抗力的颗粒,这些颗粒会堵塞膜孔并使其重复使用更加困难。在将 POM 嵌入聚合物基质的可能策略中[11],我们之前已经利用了所谓的表面活性剂包覆 POM(SEP)[12],通过反阳离子交换,旨在用长的两亲性四烷基铵链取代钠阳离子。具体来说,i)二甲基十八烷基铵 (DODA) 用于促进 Ru4 POM 在 CHCl3 中的溶解度,并允许与聚醚醚酮 (PEEK-WC) 形成合适的聚合物共混物;[3] ii)可聚合阳离子丙烯酰氧十一烷基三乙基铵 (AUTEA) 用作 POM 反离子和可聚合双连续微乳液 (PBM) 的组分,后者用作多孔聚醚砜 (PES) 膜表面的功能涂层。 [4] 然而,尽管具有良好的自清洁性能,尤其是对于后一种系统,但用于制备这些 SEP 的阳离子仍然很昂贵。在此,我们探索了使用埃洛石纳米管 (HNT) 作为支架,从而为该领域提供不同的视角
摘要:我们在此报告了一种新型两亲性二嵌段肽的合成,其末端结合的寡聚苯胺及其自组装成具有高纵横比(> 30)的小直径(d〜35 nm)结晶纳米管(> 30)。表明,在溶液中形成坚固的高度结晶纳米管中,对质子酸掺杂和脱兴过程非常稳定,可以在溶液中自组装自组装,形成坚固的高度结晶的纳米管中的肽三嵌段分子。通过电子显微镜成像揭示的纳米管组件的结晶管结构和X射线衍射分析的纳米管组件和非官能化肽的纳米管组件的相似性表明,肽是肽的有效有序的结构指导型Oligomers,是有效的有序结构。掺杂的TANI肽纳米管的膜的直流电导率为Ca。95 ms/cm
碳纳米管已被广泛研究。它们的直径和手性赋予它们半导体和金属特性,使其在单电子晶体管、气体存储材料和磁制冷机等纳米级器件中具有吸引力 [1]。此外,一些研究集中于氮化硼 (BN) 纳米材料,包括 BN 纳米管、BN 纳米胶囊、BN 纳米颗粒和 BN 簇。BN 纳米管的结构类似于碳纳米管,由交替的硼原子和氮原子组成,它们完全取代石墨状薄片中的碳原子,原子间距变化很小。1981 年,Ishii 等人报道发现了具有竹子状结构的一维氮化硼 (BN) 纳米结构,他们将其称为 BN 晶须 [2]。然而,直到 1994 年,才首次在理论研究中提出了具有完美管状结构的 BN 纳米结构的存在 [3],之后才于 1995 年通过电弧放电合成。在随后的几年中,大部分研究都集中在合成氮化硼纳米管 (BNNT) 和表征其结构上。近年来,人们对氮化硼纳米管 (BNNT) 的兴趣日益浓厚,因为它们在所有配置中都具有半导体特性,具有较宽的带隙。这些特性使它们特别适合开发紫外发光装置和太阳能电池中的各种应用。此外,它们在极端条件下保持稳定光电特性的能力为新材料开辟了新方向。
审查:“通过诸如价电子(dopingp)等制备中的NIR-VIS-UV吸收光谱培养纳米管的分布”