抽象的隧穿纳米管(TNT),连接的细胞之间的开放膜通道代表了一种新型的直接通信方式,以扩散各种细胞材料,包括生存信号或死亡信号,遗传材料,细胞器和病原体。他们的发现促使我们回顾了我们对涉及细胞通讯的许多生理和病理过程的理解,但也使我们能够在远处发现新的交流机制。虽然这已经丰富了田地,但它也引起了一些混乱,因为已经描述了不同的TNT样突起,尚不清楚它们是否具有相同的结构 - 功能。大多数研究都是基于低分辨率成像方法的,主要问题之一是不一致地证明了这些各种连接与转移属于不同种群之间的材料之间的概念。此简短审查研究了TNT的基本属性。在成年组织中,TNT被不同的疾病,应力和燃料信号刺激。“另外”,基于突触刺和TNT伪造的发展过程的相似性,我们认为大脑中的TNT早于突触传播,在未成熟神经元电路的编排中发挥了作用。
经过近三十年的国际深入研究,碳纳米管 (CNT),尤其是单壁纳米管 (SWNT),仍然是纳米科学和量子科学研究的强大动力。这种典型的一维纳米科学物体具有各种电学、光学和机械特性,催生了大量的应用。这些应用面临的主要障碍是将高质量、合适的 CNT 定位和组织到特定的架构中,同时保留其优异的性能,这些性能通常与其晶体质量和高纵横比有关。因此,一条通往具体科学问题和应用的突出研究方向是寻找对齐、选择、定位和完善 SWNT 的策略 [1, 2, 3]。应用包括柔性高温电子器件、光电子器件和热电器件 [4]、纳米流体 [5]、终极纳米级晶体管 [6, 7]、纳米力学 [8]、扫描探针尖端 [9]、量子力学系统 [10] 和场发射 (FE) 源 [11]。为了通过更好地控制生长来克服主要障碍,显然首先希望在原子尺度上观察单个 CNT 的时间分辨生长,其次希望找到控制这种生长的有用工具,如果可能的话,最好是动态控制。对于这种控制,需要不同的外力,如电场 [12]、气流 [13]、与原子台阶的相互作用
摘要:单壁碳纳米管 (SWCNT) 的光物理因其在光收集和光电子学中的潜在应用而受到深入研究。SWCNT 的激发态形成强结合的电子-空穴对,激子,其中只有单重态激子参与应用相关的光学跃迁。长寿命的自旋三重态阻碍了应用,但它们成为量子信息存储的候选者。因此,非常需要了解三重态激子的能量结构,特别是 SWCNT 手性依赖的方式。我们使用专用光谱仪报告了对几种 SWCNT 手性的三重态复合发光(即磷光)的观察结果。这得出了单重态-三重态间隙与 SWCNT 直径的关系,并遵循基于量子约束效应的预测。在高微波功率(高达 10 W)辐射下的饱和度可以确定三重态的自旋弛豫时间。我们的研究敏感地区分了最低光学活性状态是从同一纳米管上的激发态填充的,还是通过来自相邻纳米管的福斯特激子能量转移填充的。关键词:碳纳米管、光学检测磁共振、弛豫时间、量子约束、分子标尺、福斯特激子转移 U
完整作者列表: 李高杰;中原工学院 陈孔耀;中原工学院,先进材料研究中心 王艳杰;中原工学院,先进材料研究中心 王卓;中原工学院,先进材料研究中心 崔斯文;中原工学院,先进材料研究中心 陈雪莉;中原工学院,先进材料研究中心 吴子杰;曼彻斯特大学,曼彻斯特大学航空研究所 苏蒂斯,康斯坦丁诺斯;曼彻斯特大学,曼彻斯特大学航空研究所 陈伟华;郑州大学,化学与分子工程学院 米丽薇;中原工学院,先进材料研究中心
注意:请注意,此文档可能不是记录的版本(即已发布的版本)。作者手稿版本(作为同行评审或同行评审后接受的出版物接受的子手稿版本)可以通过出现出版商品牌和/或排便中的出现来确定。如果有任何疑问,请参考已发布的来源。
看来,纳米级的第一批琴弦是由法国奥尔良大学的Marinobu Endo于1970年编写的。这些细丝的直径为7纳米,并通过蒸汽生长法制备。今天,Tsukuba的NEC实验室的IJIMA名称是1991年成功观察HR-TEM纳米管的第一个人,仍然是该领域的研究人员的首位。同时,旋转电子的自旋可以有两个方向。到目前为止,物理学家认为电子的四个可能状态彼此相等。这四个状态是从两个旋转状态的组合(在向上和向下的方向上)和两个状态获得电子旋转方向。同时,在莫斯科独立地,科学家成功地发现了微管,其长度与直径的比率低于Ijima的发现。俄罗斯人将这种物质命名为Barrelense。Ijima设法观察到的是一种多层纳米管,两年后,他成功地观察了单层纳米管。在1996年,赖斯的小组成功地制作了单层纳米管的并行堆栈,这为进一步研究一维量子物理学开辟了道路。
看来,纳米级的第一批琴弦是由法国奥尔良大学的Marinobu Endo于1970年编写的。这些细丝的直径为7纳米,并通过蒸汽生长法制备。今天,Tsukuba的NEC实验室的IJIMA名称是1991年成功观察HR-TEM纳米管的第一个人,仍然是该领域的研究人员的首位。同时,旋转电子的自旋可以有两个方向。到目前为止,物理学家认为电子的四个可能状态彼此相等。这四个状态是从两个旋转状态的组合(在向上和向下的方向上)和两个状态获得电子旋转方向。同时,在莫斯科独立地,科学家成功地发现了微管,其长度与直径的比率低于Ijima的发现。俄罗斯人将这种物质命名为Barrelense。Ijima设法观察到的是一种多层纳米管,两年后,他成功地观察了单层纳米管。在1996年,赖斯的小组成功地制作了单层纳米管的并行堆栈,这为进一步研究一维量子物理学开辟了道路。
elvysreis@yahoo.com.br 摘要 将碳纳米管 (CNT) 添加到胶凝基体中,更具体地说添加到混凝土中,可以提高其强度和耐久性。从这个角度来看,本文旨在回顾含碳纳米管混凝土 (CNT 混凝土) 的主要工程性能。为此,我们使用 ProKnow-C 方法查找过去五年中发表的最相关论文,并选择了 19 篇文章进行完整分析。收集的数据包括 CNT 的类型、含量和分散技术,以及 CNT 混凝土的类型和性能,即抗压强度、抗拉强度和抗弯强度、弹性模量、吸水率、孔隙率和渗透性、电导率和电阻率、碳化和氯离子渗透阻力、断裂能和韧性。这篇系统的文献综述表明,添加 CNT 通常会提高混凝土强度,但其对其他工程性能(如碳化和氯离子渗透阻力、蠕变和收缩)的影响仍需要进一步研究。 关键词:水泥基材料;碳纳米管;力学性能;耐久性。1. 引言混凝土是世界上消耗最多的建筑材料,也是污染最严重的材料,其生产约占全球二氧化碳排放量的 7% [1]。由于其多种使用方式,数以百万计的钢筋混凝土 (RC) 结构每天都面临着恶劣的天气条件、污染和其他化学侵蚀,这些侵蚀会渗透并损坏其钢筋。然而,修复这些损坏的成本可能很高,正如美国土木工程师学会 (ASCE) 年鉴中所述 [2]。从这个意义上说,一些 RC 结构不断出现一系列耐久性问题,主要与腐蚀、潮湿、氯离子侵蚀、硫酸盐和碱金属有关。
1 微电子与纳米电子中心(CMNE),电气与电子工程学院,南洋理工大学,50 Nanyang Ave,Singapore 639798,新加坡;chunfei001@e.ntu.edu.sg(CFS);e190013@ntu.edu.sg(LYXL);ChongWei@ntu.edu.sg(CWT);lxhu@ntu.edu.sg(LH);TanCS@ntu.edu.sg(CST)2 CNRS-NTU-THALES 研究联盟/UMI 3288,研究技术广场,50 Nanyang Ave,Border X Block,第 6 层,新加坡 637553,新加坡;jxwang@ntu.edu.sg(JW);simon.goh@ntu.edu.sg(SCKG);Philippe.Coquet@cnrs.fr(PC); ehongli@ntu.edu.sg (HL) 3 Institut d'Electronique, de Micro Electronique et de Nanotechnologie (IEMN), CNRS UMR 8520-Université de Lille, 59650 Villeneuve d'Ascq, France 4 南洋理工大学机械与航空航天工程学院, 50 Nanyang Ave, Singapore 639798,新加坡 * 通讯地址:EBKTAY@ntu.edu.sg † 两位作者对本手稿的贡献相同。
汉娜·谢伊布里奇(Hannah Scheiblich),1,2,3弗雷德里克·艾肯斯(Frederik Eikens),1,2,2,2 lena wischhof,2,3 Sabine Opitz,4 Kay J€ungling,5 Csaba csere´ P,6 Susanne V. Schmidt,Susanne V. Schmidt,1 1 Jessica Lambertz,7 jessica Lambertz,7 tracy Bellande,8 Balande,8 Bala's poeck Zs poote Zs po g po g po g po g po g s po po g'po。 Jasper Spitzer,1 Alexandru Odainic,1,9 Sergio Castro-Gomez,10 Stephanie Schwartz,10 Ibrahim Boussaad,11 Rejko Kr Kr€Uger,11 Enrico Glaab,11 Donato A.di Monte,2 Daniele Bano,2 a·da´m de´nes,6 Eike Latz,2,12 Ronald Melki,8 Hans-Christian Pape,5和Michael T. Heneka 2,11,11,12,12,13,14, * 1德国科隆的麦克斯·普兰克 - 衰老生物学生物学4神经病理学研究所,波朗大学,波朗大学,德国波恩大学5个生理学研究所I研究所,Westf€Alische Wilhelms-University M€UNSTER M€UNSTER M€UNSTER,M€UNSTER,M€UNSTER,UNSTER,UNSTR Franc¸ ois Jacob, CEA and Laboratory of Neurodegenerative Diseases, Fontenay-aux-Roses, France 9 Department of Microbiology and Immunology, The Peter Doherty Institute for Infection & Immunity, University of Melbourne, Melbourne, VIC, Australia 10 Institute of Physiology II, University Hospital Bonn, Bonn, Germany 11 Luxembourg Centre for Systems Biomedicine, University of卢森堡,Belvaux,卢森堡12个先天免疫学院,大学医院波恩,波恩,德国波恩,13传染病和免疫学系,马萨诸塞大学,美国马萨诸塞州医学院,马萨诸塞州伍斯特大学,美国马萨诸塞州,美国马萨诸塞州14铅接触。 https://doi.org/10.1016/j.neuron.2024.06.029
