图3:a)FTIR光谱显示了PBMA和HDTMS-SIO 2起始物质粉末和膜中的特征振动。XPS数据显示了b)c 1s c)c)c)o 1S光谱和d)c 1s,e)o 1s和f)hdtms-sio 2 /pbma膜的f)si 2p光谱。
DNA纳米结构引导的蛋白质将蛋白质组装成可编程的形状Qinyi Lu 1,Yang Xu 2,3,Erik Poppleton 3,Kun Zhou 4,Kun Zhou 4,Petr Sulc 2,3,Petr Sulc 2,3,Nicholas Stephanopoulos 2,3 *亚利桑那州立大学设计与生物仪,亚利桑那州坦佩市,亚利桑那州坦佩85287,美国3分子科学学院,亚利桑那州立大学,亚利桑那州坦佩,亚利桑那州坦佩85287,美国4美国生物医学工程系,乔治亚大学技术和埃默里大学,乔治亚州埃默里大学,乔治亚州3032222222222222. yonggang.ke@emory.edu摘要
伪电容剂是一类新兴的储能材料,在电池的能量密度与电动双层电容器的功率密度之间提供了有吸引力的折衷。降低电池材料的粒径和增加的表面积是引入假能映射行为和增加功率密度的常见方法。但是,在许多情况下,随着晶体尺寸的降低,还引入了未知范围的晶格障碍,因此很难解开大小和混乱对快速充电性能的相对贡献。在这项工作中,合成了一系列纳米结构的MOS 2结构,并具有不同的晶体大小和结晶度,以使大小和障碍对电荷/放电动力学的影响解散。通过总X射线散射实验和配对分布函数分析来量化每种材料中疾病的程度和类型。电化学表征,包括电静态速率能力,环状伏安法和各种动力学分析,用于证明既减小粒径又是引入晶格障碍都是增加电荷存储动力学的有效策略,并且效果是添加的。最后,Operando X射线衍射测量结果表明,可以使用大小和混乱抑制一阶LI互化诱导的相变,这是启用假能力电荷存储的关键特征。
DNA通常在分子生物学的中心教条下起作用。1即,将DNA分子转录为RNA,然后将其转化为肽,蛋白质和酶。DNA携带的基因组信息可以指导它们组装成错综复杂的结构,并在细胞中执行编程功能,包括细胞内传播,凋亡,迁移,迁移,分裂等。生物分配的形状和结构在其功能中至关重要。因此,对这些组件的几何形状和力学的理解是结构生物学的关键。在DNA纳米技术中,DNA分子被设计为直接组装成复杂的体系结构并执行相似的机制和功能。这是基于Watson - Crick Base Pairing原则,其中A与T和G与C结合,可以用作可编程的自下而上制造策略。这个想法是由Seeman于1982年提出的,他设计了几个DNA链的四向交界处。2从那时起,已经探索了许多结构和复杂的植物。最初,DNA结构不是很好的ned and ned也不是刚性的。以下里程碑是双重
摘要:在DNA纳米技术的指导下建造的DNA纳米结构在过去的二十年中迅速发展,站在生物医学领域的最前沿。其中,DNA四面体纳米疗法(DTN)已成为最具代表性的DNA纳米结构之一。DTN很容易通过四个单链DNA的一步退火而形成。由于其独特的优势,例如简单和稳定的结构组成,高合成的效率,均匀的纳米尺寸,高的可编程性和良好的生物相容性,DTN已被广泛用于生物学检测,生物学成像,药物输送以及其他领域,并显示出巨大的潜力。尤其是在检测与癌症相关的生物标志物和抗癌药物的递送时,基于DTN的纳米平移形式取得了巨大的成功。在这篇综述中,我们专注于DTN在癌症诊断和治疗中的应用以及挑战和前景。
低维材料表现出奇特的物理特性。其中,过渡金属二硫属化物 (TMDs) 层状半导体材料,例如 MoS 2 、MoSe 2 、MoTe 2 、WS 2 、WSe 2 、WTe 2 和 PdSe 2,作为后硅时代的可能候选材料而备受关注 [1]。这些二维 TMD 纳米材料的单层 [2] 作为半导体,表现出高效的光吸收率,从而可制成高响应度的光电探测器 [3]。TMD 的主要技术特性以 MX2 形式呈现。其中,M 是由六边形排列的原子组成的薄片,堆叠在两层 X 原子之间。这些晶体的三层被弱范德华力夹住,导致块状晶体分离为单个二维薄片 [4]。相邻三层之间缺乏共价键,导致2D TMD 薄片中悬挂键短缺。
纳米光子学利用了最佳的光子学和纳米技术,近年来通过允许亚波长度结构来增强光 - 物质相互作用,从而改变了光学技术。尽管这些突破,设计,制造和这种异国情调的设备的表征仍然存在通过迭代过程,这些过程通常在计算上是昂贵,内存密集和耗时的。相比之下,深度学习方法最近显示出出色的表现作为实用的计算工具,为加速此类纳米光子学模拟提供了替代的途径。本研究通过掌握独立的纳米结构属性及其相应的光学响应之间的隐藏相关性,提出了用于传播,反射和吸收光谱预测的DNN框架。所提出的DNN框架被证明需要足够数量的训练数据,以实现从计算模型中得出的光学性能的准确近似。全面训练的框架可以在计算成本上使用三个数量级来超越传统的EM解决方案。此外,提出的DNN框架采用了深度学习方法,努力优化影响纳米结构的几何维度的设计元素,从而深入了解纳米级的通用传播,反射和吸收光谱预测。此范式提高了复杂的纳米结构设计和分析的生存能力,并且它具有许多潜在的应用,涉及纳米结构与电磁场之间的异国情调的光 - 物质相互作用。在计算时间方面,与常规FEM方法相比,设计算法的速度快700倍以上(使用手动网格划分时)。因此,这种方法为快速而通用的方法铺平了道路,以表征和分析纳米光系统的光学响应。
获得纳米结构化的氮化物和碳耐碳涂层的最常见方法之一是反应性木ementron溅射(RMS)。RMS方法使使用特定的光学和机械性能形成高质量的涂层。通过离子血浆方法形成涂料的一个重要问题是它们的组成,结构以及其物理和机械性能的预测。12在许多已发表的研究12 - 15中,已经表明,所有沉积参数都在涂层结构和机械特征中认真对待。航天器的可靠操作需要使用具有抗裂缝特性的耐磨涂层。特别是,陀螺仪系统的摩擦学元素(例如推力轴承)需要用硬抗裂缝覆盖
等离子体增强光催化已成为一种很有前途的太阳能-化学能转换技术。与孤立或无序的金属纳米结构相比,通过控制单个纳米组件的形态、成分、尺寸、间距和分散性,具有耦合结构的等离子体纳米结构阵列可产生强大的宽带光收集能力、高效的电荷转移、增强的局部电磁场和大的接触界面。尽管金属纳米结构阵列已在各种应用方面得到广泛研究,例如折射率传感、表面增强光谱、等离子体增强发光、等离子体纳米激光和完美光吸收,但表面等离子体共振 (SPR) 与增强光催化之间的联系仍然相对未被探索。在本研究中,我们概述了从零维 (0D) 到三维 (3D) 的等离子体纳米结构阵列,以实现高效的光催化。通过回顾等离子体纳米结构阵列在太阳能驱动化学转换中的基本机制、最新应用和最新发展,本研究报告了等离子体纳米结构集成用于等离子体、光子学、光电检测和太阳能收集领域的功能设备的最新指导。
摘要 模拟突触功能(例如增强和抑制)对于开发人工神经形态结构具有战略意义。通过在去除开关信号后利用电阻水平的逐渐放松,忆阻器可以定性地再现生物突触的短期可塑性行为。为此,已经提出了各种基于纳米制造的金属氧化物半导体堆栈的忆阻器。在这里,我们介绍了一种不同的制造方法,该方法基于以双层平面配置沉积的簇组装纳米结构氧化锆和金薄膜(ns-Au / ZrO x)。该装置表现出具有短期记忆和增强/抑制的忆阻行为。观察到的松弛可以用拉伸指数函数来描述。此外,在重复脉冲应用下,短期现象的特征时间会动态变化。我们的纳米结构装置的特点是与其他纳米级忆阻装置相比,导电路径长度明显更长;氧化锆纳米结构薄膜的使用使得该装置与神经元细胞培养兼容。