干气溶胶沉积 (DAD) 是一种新兴的增材制造喷涂工艺,可直接从干粉构建完全致密的纳米结构陶瓷涂层和低轮廓 3D 结构,而无需粘合剂或流体介质。由于 DAD 依靠冲击动能而不是热量进行致密化,因此功能陶瓷可以直接沉积在聚合物以及陶瓷和金属基材上。本演示将介绍我们在定制沉积系统中使用的两种截然不同的陶瓷原料粉末的一些结果:1.钛酸钡钕,一种用于 RF/微波通信的高 K 微波电介质,以及 2.模拟月球风化层,用于原位资源利用 (ISRU) 和太空制造。
纳米结构的电化学生物传感器已经迎来了诊断精度的新时代,从而增强了临床生物标志物检测的敏感性和特异性。中,电容性生物传感可实现多个分子靶标的超灵敏标签检测。但是,与纳米结构平台的常规制造方法相关的复杂性和成本阻碍了这些设备的广泛采用。这项研究引入了一个电容式生物传感器,该生物传感器利用激光磨碎的还原氧化石墨烯(RGO)ELEC TRODE,该Elec Trodes装饰有金纳米颗粒(Aunps)。制造涉及激光标记的GO-AU 3 +膜,产生RGO-AUNP电极,通过按压戳面方法无缝传输到PET基板上。这些电极与特定生物受体功能化后,对生物分子识别具有显着的亲和力。例如,使用人IgG抗体的初步研究证实了使用电化学电容光谱学的生物传感器的检测能力。此外,生物传感器可以量化临床癌症生物标志物Ca-19-9糖蛋白。生物传感器的动态范围在0到300 u ml -1,检测极限为8.9 u ml -1。对人体液体预处理的CA-19-9抗原的已知浓度进行严格测试证实了它们在检测糖蛋白方面的准确性和可靠性。这项研究表示临床生物标志物的电容式生物传感方面的显着进展,可能导致更容易获得和成本效益的护理解决方案。
将光限制到原子尺度的能力对于光电子学和光学传感应用的开发以及纳米级量子现象的探索至关重要。厚度仅为几个原子层的金属纳米结构中的等离子体可以实现这种限制,尽管亚纳米级的制造缺陷阻碍了实际发展。在这里,通过预图案化硅基板并外延沉积厚度仅为几个原子层的银膜制造的原子级薄结晶银纳米结构中展示了窄等离子体。具体而言,对硅晶片进行光刻图案化以引入按需横向形状,对样品进行化学处理以获得原子级平坦的硅表面,并外延沉积银以获得具有指定形态的超薄结晶金属膜。按照此程序制造的结构可以对近红外光谱区域的光场约束进行前所未有的控制,这里通过观察具有极端空间约束和高品质因子的基阶和高阶等离子体来说明这一点,这些因子反映了金属的晶体性。本研究在空间约束程度和品质因数方面取得了实质性的改进,这将有助于设计和利用原子级纳米等离子体器件用于光电子、传感和量子物理应用。
我们通过数值探索光子TAMM状态(OT),该光子结构由由纳米结构的金属层组成的光子结构(DBR)上方。评估了几种极化,发生率和模式的映射及其特性。然后,我们通过在金属图案下方添加钴层并切换其磁化强度来获得OT的磁控制。该控制在等离子原料中广泛使用,利用了横向磁光kerr效应(TMOKE)。该结构的模拟Tmoke signal的幅度为10-3,与常规的磁性结构相比,在金属条纹之间提供了高能量的结果。除了可以更好地访问分析物进入敏感区域的金属层开放外,这为在生物和化学感测应用中的敏感性较高的道路铺平了道路。
strands”在DNA折纸中,接吻环和RNA折纸中的其他连接器图案)。两种方法都已用于设计各种2D形状和3D结构(5,6)。大多数当前的3D折纸设计遵循在彼此顶部包装几层二维螺旋或螺旋束的方法,和/或弯曲的螺旋束如(7,8)中最初建议。3D设计的替代路径是创建一个线框结构,该结构仅包含3D模型的边界边缘和顶点。在这个方向上有几个值得注意的前虫前旅行(9,10),但是随着柔性且坚固的折纸技术的发展,它大多开始获得追随者(6,11)。与螺旋装箱相比,线框设计的一些优势包括使用链的经济,这允许建造较大的结构,并在低盐条件下更好地折叠。一些挑战是结构的刚性较低,尤其是对于大型的单螺旋边缘设计(可以通过使用多螺旋边缘来减轻,以增加链的使用来缓解)和大型复杂设计的产量低。已经存在几种核酸纳米结构设计工具(8、12、13、14、15、16、17、18、19、20、21)。Most of these however address helix-packing designs, with the more recent ones oriented towards wireframe structures including vHelix (14), DAEDALUS (15) and ATHENA (18) for 3D DNA wireframes, Sterna (20) for single-stranded 3D RNA wireframes and PyDAEDALUS (21) for 3D RNA/DNA hybrid wireframes.这些工具主要支持一种特定的设计方法,每个工具也都处于离线状态,需要一个单独的过程来安装工具及其辅助库,有时可能很难找到或在最坏的情况下弃用。
图3 - (a)具有等效电路(EC)的BCWN样品的示意图。电阻(b),晶体大小(C)和卢比的值之间的相关性。EC -FILM电容(D)和孔电阻(E)的外部要素与预计的空腔边界长度之间的相关性,由SEM估计。相关性,由SEM估计。
由于对人类健康和环境的合成色彩不利,因此迅速转移了从植物和微生物等天然来源的颜色中使用。从冰川,冰芯,海洋地表水等的特色环境中鉴定出许多产生色素的微生物。在这项研究中,我们从印度研究站Himadri附近收集的北极石材样本(78°55'55'N 11°56'E)分离出4种不同的产生色素的细菌菌株,位于北北极研究基地,位于北北北极研究基地,Nyålesund,Svalbard,Norway。色素的产生。使用革兰氏阴性,过氧化氢酶测试,氧源性测试等多个实验鉴定了形态,文化和生化特征。这项研究的目的是确定能够为药物和工业应用产生不同色素的新型细菌菌株。
摘要:人工神经网络 (ANN) 已成为机器学习 (ML) 中一种分析复杂数据驱动问题的有效方法。由于其时间效率高,它在物理学、光学和材料科学等许多科学领域都很受欢迎。本文提出了一种基于 ANN 的计算高效方法来设计和优化电磁等离子体纳米结构的新方法。在本研究中,首先使用有限元法 (FEM) 模拟纳米结构,然后使用人工智能 (AI) 对不同配对纳米结构的相关灵敏度 (S)、半峰全宽 (FWHM)、品质因数 (FOM) 和等离子体波长 (PW) 进行预测。首先,使用有限元法 (FEM) 开发计算模型来准备数据集。输入参数被视为长轴 a 、短轴 b 和分离间隙 g ,它们已用于计算相应的灵敏度(nm/RIU)、FWHM(nm)、FOM 和等离子体波长(nm)以准备数据集。其次,设计了神经网络,其中优化了隐藏层和神经元的数量,作为综合分析的一部分,以提高 ML 模型的效率。成功优化神经网络后,该模型用于对特定输入及其对应的输出进行预测。本文还比较了预测结果和模拟结果之间的误差。该方法优于直接数值模拟方法,可用于预测各种输入设备参数的输出。
摘要 在混合溶剂(水-丁醇和水-环己醇)存在下,利用醋酸铜和硫脲研究了硫化铜(CuS)的结构、成分、电气和发光特性。硫化铜样品的 X 射线衍射 (XRD) 图案显示其六方结构,这是各种混合溶剂的结果。通过使用能量色散 X 射线 (EDX) 和傅里叶变换红外 (FT-IR) 检查,确定了键和原子量百分比。使用扫描电子显微镜 (SEM) 发现水-丁醇和水-环己醇中的硫化铜颗粒形态分别为棒状和片状。使用光带能量曲线和紫外-可见光吸收光谱确定了硫化铜纳米结构的带隙能量。硫空位缺陷是 PL 光谱中出现的紫外和可见光发射带的原因。根据 CV 研究,水-环己醇辅助的硫化铜样品的电化学特性优于水-丁醇辅助的硫化铜样品。根据催化剂的效率,计算了混合溶剂辅助的硫化铜样品中坎戈红 (CR) 染料降解的比例。引言与环境问题、危险废物和有毒水污染物相关的硫化铜受到了广泛关注。有机染料对纺织和其他行业的重要性也非常重要。与传统方法相比,催化方法具有多种优势,包括氧化速度更快和不产生多环产物。由于半导体材料吸收光,带隙能量等于或大于,这可能导致自由基氧化系统表面。但如今,硫化铜因其与能量存储和生物应用(包括抗菌和抗癌治疗)的联系而成为主要研究对象。硫族化合物纳米结构半导体,包括 ZnS、CdS、NiS、CoS 和 CuS,可用于气体传感器、LED、光伏电池、光催化和其他应用。CuS 纳米结构是硫族化合物之一,是 p 型半导体材料,由于其在环境温度下的带隙低至 2.2 eV,因此非常有利于光热、光电应用。这是由于光吸收过程中光子原子分子与光吸收之间的相互作用。具有各种形态的过渡金属氧化物作为光电材料的开发引起了人们的新兴趣,最近发现的一类具有有趣光物理特性的纳米材料的报道正在促进
1。犹他州犹他州盐湖城肿瘤科学系。2。犹他州盐湖城犹他大学亨斯曼癌症研究所。3。德克萨斯大学医学博士安德森癌症中心遗传学系,德克萨斯州休斯敦4。Deciphera Pharmaceuticals LLC,堪萨斯州劳伦斯市643 ST。5犹他州盐湖城病理学系。 6。 犹他州盐湖城医学肿瘤学部内科学系。 7。 犹他州盐湖城皮肤科系皮肤科系。 *通讯作者马丁·麦克马洪(Martin McMahon),博士 俄罗斯大学,犹他大学,2000年希望圈,HCI-RS-2725盐湖城,盐湖城,UT 84112(801)213 5790电子邮件:martin.mcmahon@hci.utah.utah.utah.utah.utah.uta.edu作者贡献:PCG,PCG,PCG,MM,MM,MM,MB,BDS和DLF设计了实验者; PCG和MM分析了数据; PCG执行了大多数实验。 KTO协助免疫印迹;太太进行了体外协同作用测定; SSB和MTS协助体内动物研究; ELS进行了组织病理学分析; PCG和MM写了手稿;所有作者均审查并编辑了手稿。 相互竞争的利益声明:此处描述的研究得到了犹他大学和Deciphera Pharmaceuticals,LLC的赞助研究协议的支持,并授予MM和CGK。 关键字:KRAS,ULK,LKB1,TP53,自噬,KRAS G12C的基因工程小鼠模型 - 驱动的肺癌5犹他州盐湖城病理学系。6。犹他州盐湖城医学肿瘤学部内科学系。7。犹他州盐湖城皮肤科系皮肤科系。*通讯作者马丁·麦克马洪(Martin McMahon),博士俄罗斯大学,犹他大学,2000年希望圈,HCI-RS-2725盐湖城,盐湖城,UT 84112(801)213 5790电子邮件:martin.mcmahon@hci.utah.utah.utah.utah.utah.uta.edu作者贡献:PCG,PCG,PCG,MM,MM,MM,MB,BDS和DLF设计了实验者; PCG和MM分析了数据; PCG执行了大多数实验。 KTO协助免疫印迹;太太进行了体外协同作用测定; SSB和MTS协助体内动物研究; ELS进行了组织病理学分析; PCG和MM写了手稿;所有作者均审查并编辑了手稿。相互竞争的利益声明:此处描述的研究得到了犹他大学和Deciphera Pharmaceuticals,LLC的赞助研究协议的支持,并授予MM和CGK。关键字:KRAS,ULK,LKB1,TP53,自噬,KRAS G12C的基因工程小鼠模型 - 驱动的肺癌
