摘要:尽管工程,纳米技术,医学,生物学和人工智能计算方面取得了重大进步,但这些学科之间的整合差距显着阻碍了医疗实践的效率和演变,包括患者监测,诊断和治疗方法。解决这些关键瓶颈对于在精密医学时代的时代迎来至关重要。我们通过开发创新,最先进的,具有成本效益,可扩展,智能,易于使用和准确的基于纳米技术的设备(IOMT)设备的创新,最先进的,可扩展的,智能的,智能,智能,易于使用,智能,智能,智能,智能,智能,智能,智能,智能,智能,智能,智能,智能,智能,智能,智能,智能研究的努力。这些下一代设备旨在将生物医学研究转化为精密医学中的先进预防,诊断和治疗策略。我们的方法涉及开发一类新的智能纳米/微生物电子设备,这些设备可穿戴和便携,旨在获取有关人体动态健康状况的高度特定信息。这些设备的设计旨在通过物理传感器进行全面和同时评估时间序列的生理和分子谱,以用于临床相关的生理生物信号和电化学传感器,以检测临床相关的生物标志物,包括分泌物,养分,养分,养分和药物供应,并促进了临床相关的生物标志物。我们目前的研究重点是两个主要方向:首先,我们正在开发智能,柔软,无创,多模式和灵活的纳米/微生物可穿戴设备。Biosketch:Esfandyar-Pour博士获得了他的硕士学位。通过新兴制造技术(例如3D纳米材料打印)结合功能性纳米材料,并得到智能计算技术以及智能,无线,发电的电子系统的支持,这些设备促进了正确标记的正确标记的时间 - 时间序列的健康数据。这些数据将使用大数据计算技术和感官数据分析方法进行解析,从而提供交互式实时反馈。这可以捕获个性化的健康基线,并促进对健康异常的可靠预测。其次,我们正在开发模拟3D-In-bimicking的器官和芯片设备的开发,将它们与软生物电子学集成在一起。这种方法旨在使电子设备与器官/组织模型进行连接,从而克服无机电子和有机生物系统之间的长期障碍。By embedding soft electronics into these 3D-in-vivo-mimicking models, we aim not only to enhance our understanding of disease mechanisms and drug responses but also to achieve accurate in-vitro disease modeling and therapeutic efficacy assessment through the seamless integration of electronics onto, into, and within these 3D-in-vivo-mimicking-organ models.本演讲将展示这些协同的努力如何实现这些新的生物电子设备和技术,这些设备和技术在促进临床相关,准确的标记,精确的大规模生物标志物数据的收集至关重要的情况下,从人类和人类模型中都具有较大的治疗效果和改进的患者,并标记了均与PRIAPSISPRIING CAIRESISION CAIRESISION CAIRESISION和PRECESISION cORTISSISPRION CAIRESISION。和Ph.D.斯坦福大学(Stanford University)的电气工程专业,随后通过博士后奖学金扩大了他的体验,并在斯坦福大学医学院(Stanford Medical School)担任工程研究。他目前是电气工程与计算机科学,生物医学工程,材料科学与工程以及加利福尼亚大学欧文分校的机械与航空工程系的助理教授。他的跨学科研究小组在智能纳米单位电子学方面的工作无缝地与Precision Medicine中的Pracacal Applipains无缝桥接基础研究。他们着重于以疾病预防,早期诊断和效率治疗的三重目标来启用精确药物的关键bomlenecks。他的贡献获得了多个奖项,包括2023年的DARPA年轻教师Invesagator奖,包括Internaa -Interaaonal Biofabricaon学会,ITSA奖,ITSA奖的早期职业入侵者奖,以及NERVINE INRVINE INNOVATORS之一,在20233年中产生了2023年的影响。Esfandyarpour博士的研究已从各种媒体中宣传了广泛的雷纳诺,包括新的Scienast,Nature News,Science Daily,BBC News,BBC News,Nanomagazine,Nanomagazine,Azosensor News,Pioneering Minds,HealthTechech Insider,Europa Press,Europa Press等。
原始文章探讨了儿童体育锻炼与认知功能之间的关系Silvia Coppola 1,Carmela Matrisciano 2,Rodolfo Vastola 3 1-2萨勒诺大学,创新教学方法论实验室,体育绩效分析和体育绩效分析的实验室,意大利萨勒诺大学3月3日,萨勒诺大学31. 5月31日,萨尔纳诺大学312. 4月20日:4 312:4 doi:10.7752/jpes.2024.05144摘要,科学讨论集中在体育锻炼(PA)对儿童认知发展的影响。在这项研究中,我们对PA对儿童认知功能的影响进行了深入分析。我们的目标是确定通过PA干预增强认知功能的最有效方法和设置。使用Google Scholar,PubMed,Scopus和Web of Science进行了文献综述,重点介绍了2016年1月至2024年3月之间发表的研究。每个数据库使用以下搜索词:体育锻炼,孩子和认知技能。这项工作包括实验研究,荟萃分析,系统评价和范围评论。包括19篇文章中的7个专注于认知吸引人的PA游戏,PA上的4个,户外PA上的3个,其中1个在游戏环境的设计上。研究报告了各种环境:四个在学校体育设施中,三个在学校教室,一个在课外运动设施中,一个在校园里,一个在室内和室外运动设施中,另一个在学校实验室中。(2020)和Vasilopoulos等。2022)。结果表明,认知吸引PA游戏可以增强执行功能,而PA将军与学校表现的改善相关。纳入的研究表明,基于PA的生态 - 动力学方法(EDA)原理采用方法来提高认知功能。总而言之,未来的研究可以探讨动态生态方法中基于的PA干预措施对各种认知能力的影响,例如创造性思维和解决问题。我们的目标是鼓励科学界,教育机构和教师培训计划之间的合作,以在教育环境中促进这些方法。关键字:认知技能;体育;在当前的研究中,人们对认知刺激体育锻炼和室外发挥在认知功能的作用的作用中引起了生态动力学方法的介绍。关于认知功能的影响,一些研究人员,包括Pesce C.(2012),Rudd等。(2023),提出了从“数量”的独家重点转变为促进体育活动的“质量”以支持认知发展。在这方面,引入了“认知吸引人”体育活动的概念,以突出它如何通过运动过程中的认知工作来影响认知。高质量的运动活动应具有协调性,认知和社会互动要素,以促进整体发展,不仅在身体效率和协调方面,而且在认知功能和生活技能方面。2017; Kolovelonis&Goudas 2022)。2016)。这种方法旨在完全幸福于孩子和未来的成年人(Kolovelonis等人。在设计有效的体育锻炼课程时,要考虑物理和认知领域之间的互连至关重要,尽管这些方面通常经常被单独进行治疗。实际上,通常以牺牲认知能力为代价的身体技能的发展(Pesce等人提出有认知需求的体育活动课可以通过促进有意义的学习来帮助改善儿童的注意力范围(Schmidt等人。通过增强身体,情感,社交和认知能力来使儿童的体育锻炼受益于儿童的整体发展(Bailey 2018; Bedard等人。2021; Kolovelonis和Goudas 2022; Kolovelonis等。2022; Kolovelonis和Goudas 2023)。不幸的是,在某些情况下,传统教室的环境可能会限制进行体育锻炼(Beddoes等人2020)。因此,必须改善和扩大体育活动参与的机会至关重要(Abi Nader等人2018),因为它可以带来身体和认知益处。Webster(2015)介绍了两种方法,以确保在课程中有运动机会: - 在教学活动中纳入体育活动,以便通过学生的积极参与进行学习; - 安排简短的体育活动在课程之间破裂。