Rong Fan 1#* , M.D., Siru Zhao 1# , M.D., Junqi Niu 2 , M.D., Hong Ma 3 , M.D., Qing Xie 4 , M.D.,
确定重点患者群体是为该群体匹配适合其需求的干预措施的良好开端。个性化方法可创建系统设计,从而促进有效的 LCM 模型。风险分层也可以成为一种有用的工具,用于识别有不良结果或使用高成本护理风险的患者。Corewell Health 将其最初的重点患者群体定义为具有风险合同的内部初级保健提供者 (PCP) 的患者。在电子健康记录中建立了一个名为“Blue R”的标志来划分这些患者。额外的构建提供了主动患者列表,以识别具有 Blue R 且糖化血红蛋白 (HgbA1c) 为 8 及以上的患者。一旦建立了 LCM 干预措施和工作流程,就会构建定制的 Epic Compass Rose 工具,以方便护理管理团队进行纵向记录。
摘要 简介尽管人们越来越意识到先天性心脏病 (CHD) 儿童的神经发育障碍,但仍然缺乏大规模的纵向人口队列研究。人们对 CHD 儿童入学时的当代神经发育状况和特定障碍的出现知之甚少。标准化筛查工具在预测这一高危人群学龄神经发育结果方面的表现仍然知之甚少。心肺旁路期间使用一氧化氮改善先天性心脏病婴儿康复 (NITRIC) 试验随机选取 1371 名 2 岁以下儿童,研究在心脏手术期间将气态一氧化氮应用于心肺旁路氧合器的影响。NITRIC 后续研究将每年跟踪这个队列,直到 5 岁,以评估入学时的认知和社会情感行为相关结果,确定不良结果的风险因素并评估筛查工具的表现。方法与分析 澳大利亚和新西兰五个地点的 NITRIC 试验中约有 1150 名儿童符合条件。后续评估将分两个阶段进行:(1) 每年在线筛查 2-5 岁时的整体神经发育、社会情感和执行功能、健康相关生活质量和育儿压力;(2) 5 岁时进行面对面评估,评估智力、注意力、记忆力和处理速度;精细运动技能;语言和交流;以及社会情感结果。认知和社会情感结果和轨迹
摘要简介:脑部疾病,例如创伤性脑损伤 (TBI)、中风、脑瘫 (CP) 和外科手术,可能导致对侧肢体运动功能异常,从而导致瘫痪、虚弱和/或痉挛。众所周知,短期内,神经肌肉电刺激 (NMES)(将低水平电流施加到运动神经以诱发瘫痪肌肉的肌肉收缩)可以刺激受影响的肌肉群并增加手臂活动能力。然而,仍然缺乏纵向证据来研究 NMES 介导的手臂使用改善。目的:本研究旨在确定长期 BioSleeve 干预对偏瘫患者手臂活动能力恢复的有效性。研究设计:本研究的设计是一项回顾性队列研究。方法:我们检查了 1) TBI、2) 中风、3) 半球切除术或 4) CP 患者的自我报告手臂使用情况,这些患者佩戴了 Axiobionics 的 BioSleeve NMES 设备,并将其与多年常规治疗所获得的手臂使用情况进行了比较。结果:该设备耐受性良好。患者报告手臂使用率平均从 9.9% 增加到 43.5%,TBI 亚组报告手臂使用率在治疗期间每年持续增加 5.7%。结论:本研究支持文献表明纵向 NMES 可用于增加偏瘫患者的手臂使用率。临床相关性声明:本研究支持使用可穿戴 NMES 干预治疗手臂偏瘫。(J Prosthet Orthot。2024;00:00 – 00)
早期的精神病:干预和临床检测(EPIC)实验室,精神病学系,精神病学研究所,心理学与神经科学研究所,国王伦敦大学,英国B伦敦,英国B精神病学院和心理健康研究所。
帕金森病 (PD) 是最常见的神经退行性疾病之一,其常见特征为运动不能、运动迟缓和震颤,并常伴有轻度认知障碍,从而显著降低整体生活质量 [1]。这些症状还伴有大脑皮层和皮层下结构萎缩以及皮层变薄 [2]。因此,人们对确定磁共振成像 (MRI) 测量的萎缩是否可以作为认知能力下降的生物标志物产生了兴趣。总体而言,灰质萎缩和皮层变薄存在于早期 PD 中,而额叶萎缩和颞顶叶变薄与 PD 的认知障碍有关 [3]。通过磁共振成像测量 PD 中发生的大脑结构性变化已成为了解 PD 轨迹的潜在诊断和预后工具。结构成像,特别是区域皮质厚度和灰质体积的减少,被认为有助于确定 PD 诊断、进展预后以及区分 PD 与其他痴呆症 [2]。然而,需要进一步研究这些进展测量的敏感性、可靠性、混杂因素的影响和整体普遍性 [3],而这种严格的验证可能是阻碍采用 MRI 测量作为 PD 临床研究结果测量的一个因素。近年来,神经影像学结果的复制受到了多方面的挑战。例如,在 Botvinik-Nezer 等人的研究中 [4],70 个独立团队被要求使用他们选择的方法来分析相同的数据集,以检验九个事前假设。该研究调查了结果的变异性。各个研究团队获得的结果在九个假设中的五个上并不一致,一致性水平达到 21% 到 37% 不等。此外,在 PD 中识别区域性脑萎缩已成为人们关注的焦点,因为它可能是 PD 某些症状和 PD 进展的标志[2]。然而,在非 PD 人群中进行的研究表明,区域体积 [5,6] 和皮质厚度的估计值因软件工具箱而异 [7,8]。总的来说,一系列因素都会影响神经影像学结果的可重复性,包括计算环境 [9,10]、分析工具和版本 [11,12]、统计模型 [13] 和研究人群 [14]。本研究是可重复性评估项目的一部分,该项目旨在复制 Mitchel 等人 [2] 中审查的 11 个 PD 结构 MRI 测量结果。本研究的目标是复制 Hanganu 等人 [15] 的工作,以测试关于结构 MRI 衍生的 PD 生物标志物的先前发现是否可以通过使用类似的分析方法在不同的数据集中复制。 Hang-anu 等人[ 15 ] 比较了轻度认知障碍的 PD 患者 (PD-MCI)、无轻度认知障碍的 PD 患者 (PD-non-MCI) 和健康老年对照者 (HC) 的灰质体积和皮质变薄随时间的变化;还测试了 PD 患者纵向结构变化与认知衰退之间的关系。他们报告了四个主要发现:(发现 1)与无 MCI 的 PD 患者相比(主要影响右侧颞区、岛叶和下额回),以及与健康对照者相比(主要影响右侧颞区和辅助运动区),轻度认知障碍的 PD 患者的皮质变薄速度加快;
推力矢量是一种新型控制技术概念。它是指发动机推力线的偏转,以提供俯仰、滚转或偏航控制力矩或直接升力。与传统的气动控制面相比,推力矢量控制对动压的依赖性较小,能够在大迎角和失速后飞行条件下提供控制力矩。因此,推力矢量技术已应用于多种军用战斗机,以提高其机动性。只有少数人研究过推力矢量在民用运输机上的应用。需要进行量化研究,以寻找在民用运输机上应用推力矢量控制的潜在好处。
附录。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。107
Xue-Ru Fan ( 范 雪 如 ) 1,2,3,† , Yin-Shan Wang ( 王 银 山 ) 1,3,4,† , Da Chang ( 常 达 ) 1,3,† , Ning Yang ( 杨 3 宁 ) 1,2,3,4 , Meng-Jie Rong ( 荣 孟 杰 ) 1,2,3,4 , Zhe Zhang ( 张 吉吉 ) 5 , Ye He ( 何 叶 ) 6 , Xiaohui Hou ( 侯 4 晓晖 ) 7 , Quan Zhou ( 周 荃 ) 1,2,3 , Zhu-Qing Gong ( 宫 竹 青 ) 1,2,3 , Li-Zhi Cao ( 曹 立 智 ) 2,4 , Hao-Ming 5 Dong ( 董 昊 铭 ) 1,4,8,9 , Jing-Jing Nie ( 聂 晶晶 ) 1,3 , Li-Zhen Chen ( 陈 丽 珍 ) 1,3 , Qing Zhang ( 张 6 青 ) 2,4 , Jia-Xin Zhang ( 张 家 鑫 ) 2,4 , Hui-Jie Li ( 李 会 杰 ) 2,4 , Min Bao ( 鲍 敏 ) 2,4 , Antao Chen ( 陈 安 7 涛 ) 10,11 , Jing Chen ( 陈 静 ) 12,13 , Xu Chen ( 陈 旭 ) 11 , Jinfeng Ding ( 丁 金 丰 ) 2,4 , Xue Dong ( 董 雪 ) 2,4 , 8 Yi Du ( 杜 忆 ) 2,4 , Chen Feng ( 冯 臣 ) 2,4 , Tingyong Feng ( 冯 廷 勇 ) 11 , Xiaolan Fu ( 傅 小 兰 ) 2,14 , 9 Li-Kun Ge ( 盖 力 锟 ) 2,4 , Bao Hong ( 洪 宝 ) 12,15 , Xiaomeng Hu ( 胡 晓 檬 ) 16 , Wenjun Huang ( 黄 文 10 君 ) 12,15 , Chao Jiang ( 蒋 超 ) 17 , Li Li ( 李 黎 ) 12,13 , Qi Li ( 李 琦 ) 17 , Su Li ( 李 苏 ) 2,4 , Xun Liu ( 刘勋 ) 2,4 , 11 Fan Mo ( 莫 凡 ) 2,14 , Jiang Qiu ( 邱 江 ) 11 , Xue-Quan Su ( 苏 学 权 ) 7 , Gao-Xia Wei ( 魏 高 峡 ) 2,4 , 12 Yiyang Wu ( 吴 伊 扬 ) 2,4 , Haishuo Xia ( 夏 海 硕 ) 11 , Chao-Gan Yan ( 严 超赣 ) 2,4 , Zhi-Xiong Yan ( 颜 13 志 雄 ) 7 , Xiaohong Yang ( 杨 晓 虹 ) 16 , Wenfang Zhang ( 张 文 芳 ) 2,4 , Ke Zhao ( 赵 科 ) 2,14 , Liqi Zhu 14 ( 朱 莉 琪 ) 2,4 , Lifespan Brain Chart Consortium (LBCC) * , Chinese Color Nest Consortium 15 (CCNP) ** , and Xi-Nian Zuo ( 左 西 年 ) 1,2,3,4,7,18,*** 16