摘要 - 交流损耗是脉冲,超级导管iTer线圈的主要热负荷,因此是冷冻系统和超导体的设计驱动器。在过去几年中,从次要的链,电缆,长长的“线圈样”导体(所谓的插入型线圈)到完成的线圈的重要性,从iTer线圈的组件进行广泛的AC丢失表征,在过去的几年中进行了。 最近对第一个中央电磁阀(CS)模块进行了工厂测试,其中包括代表操作范围的交流损耗测试。 AC损失的建模对于准备ITER TOKAMAK操作和调试至关重要。 以下删除ITER CS线圈的交流损耗模型。 此类模型必须易于实现,并快速执行,以允许模拟较长的ITER等离子体方案。 本文解释了所应用的简化,并讨论了含义。 对模型对实验数据进行了验证。从次要的链,电缆,长长的“线圈样”导体(所谓的插入型线圈)到完成的线圈的重要性,从iTer线圈的组件进行广泛的AC丢失表征,在过去的几年中进行了。最近对第一个中央电磁阀(CS)模块进行了工厂测试,其中包括代表操作范围的交流损耗测试。AC损失的建模对于准备ITER TOKAMAK操作和调试至关重要。以下删除ITER CS线圈的交流损耗模型。此类模型必须易于实现,并快速执行,以允许模拟较长的ITER等离子体方案。本文解释了所应用的简化,并讨论了含义。对模型对实验数据进行了验证。对模型对实验数据进行了验证。
摘要 - 与传统设计相比,它在产生先进的场合校正和低成本的潜力方面的灵活性,对于紧凑型粒子加速器和医疗应用的gantries,倾斜的余弦(CCT)配置尤其有趣。This article presents the design of a curved demonstrator named Fusillo, a Canted Cosine Theta Nb-Ti dipole magnet that is being developed at CERN, featuring a large aperture of 236 mm, a small bending radius of 1 m, a bending angle of 90 ◦ , and multi-harmonic field correction, with a 3.61 T conductor peak field.我们详细介绍了磁线圈设计,并结合了由弯曲的线圈产生的误差的高阶磁场校正,线圈端处的峰值峰值降低,新的绳索型电缆的开发以及前者的机械设计和前者的开发,从而支持线圈并提供弯曲的形状。我们还介绍了用于限定线圈以前的制造过程,绳索电缆,线圈绕组优化和线圈浸渍系统的第一个结果。
磁共振成像(MRI)是神经科学研究和神经系统疾病的临床诊断的众所周知且广泛的成像方式,主要是由于其能够可视化脑微观质量并量化各种代谢物。此外,它的无创性使从体内脑样本与组织学的高分辨率MRI与组织学的相关性有可能,从而支持了神经退行性疾病的研究,例如阿尔茨海默氏病或帕金森氏病。但是,离体MRI的质量和分辨率高度取决于具有最大化填充因子的专业射频线圈的可用性,用于研究样品的不同大小和形状。例如,在超高田中全身MRI扫描仪中并不总是在商业上可用的小型,专用的射频(RF)线圈。即使对于超高场临床前扫描仪,特异性RF线圈的体内MRI也很昂贵,并且并不总是可用。在这里,我们描述了两个RF线圈的设计和构造,基于7T全身扫描仪中人脑组织的螺线管几何形状以及9.4T陶醉师中Marmoset脑样品的离体MRI的体内MRI。我们设计了7T螺线管RF线圈,以最大程度地提高磁带上的人脑样品的填充因子,以进行组织学,而构建了9.4T螺线管以适应50 mL离心管的条件。两个螺线管设计都以收发器模式运行。测得的B 1 +地图显示出感兴趣的成像量的高均匀性,并且与成像量相比,信噪比高。使用9.4T螺线管线圈以60 µm的各向同性分辨率获取了人脑样品的高分辨率(在平面为500 µm切片的厚度为500 µm)。
1。世界上高磁场的磁铁开发项目2。HFLSM的无冻磁体开发•从Rebco线圈的失败中学到的经验教训3.稳健的Rebco线圈概念•两个捆绑绕组Rebco线圈具有局部损坏•大规模Rebco R&D Coil 4。33T无冰低导的磁铁发育5。摘要
背景:经颅磁刺激 (TMS) 可以对皮质进行非侵入性刺激。在多点 TMS (mTMS) 中,通过调节换能器线圈中的电流,无需线圈移动即可电子控制刺激电场 (E- 场)。目标:开发一种 mTMS 系统,该系统可以调整皮质区域内 E- 场最大值的位置和方向。方法:我们设计并制造了一个平面 5 线圈 mTMS 换能器,以便控制直径约 30 毫米的皮质区域内感应 E- 场的最大值。我们开发了电子设备,其设计由独立控制的 H 桥电路组成,可驱动多达六个 TMS 线圈。为了控制硬件,我们编写了在场可编程门阵列和计算机上运行的软件。为了在皮质中感应出所需的 E- 场,我们开发了一种优化方法来计算线圈中所需的电流。我们对 mTMS 系统进行了表征,并对一名健康志愿者进行了概念验证运动映射实验。在运动映射中,我们保持换能器位置固定,同时以电子方式移动中央前回上的 E 场最大值并测量对侧手的肌电图。结果:换能器由一个椭圆形线圈、两个八字形线圈和两个堆叠在一起的四叶草线圈组成。技术特性表明 mTMS 系统的性能符合设计。测得的运动诱发电位幅度随着 E 场最大值的位置而持续变化。结论:开发的 mTMS 系统能够在皮质区域内进行电子靶向大脑刺激。© 2021 作者。由 Elsevier Inc. 出版。这是一篇根据 CC BY-NC-ND 许可 (http://creativecommons.org/licenses/by-nc-nd/4.0/) 开放获取的文章。
摘要 目的:磁共振成像 (MRI) 中的噪声会对患者产生负面影响。我们评估了以 20 kHz 切换的静音梯度线圈与 7 T 1 加权磁化制备的快速梯度回波 (MPRAGE) 序列的结合。方法:五名健康受试者(21-29 岁;三名女性)之前没有接受过 7-T MRI 检查,分别接受了两次安静 MPRAGE (Q-MPRAGE) 和常规 MPRAGE (C-MPRAGE) 序列。两名神经放射科医生对图像质量进行了定量和定性评估。所有受试者在每个序列之后立即以及整个检查(延迟)后(0-10 的量表)客观测量声级并主观评分。所有受试者还报告了舒适度、总体体验和再次接受该序列的意愿。结果:与 C-MPRAGE 相比,Q-MPRAGE 具有更高的信噪比 (10%;p = 0.012) 和更低的对比噪声比 (20%;p < 0.001),并且图像质量良好。Q-MPRAGE 产生的噪音水平低 27 dB (76 对 103 dB)。受试者报告 Q-MPRAGE 的即时 (4.4 ± 1.4 对 6.4 ± 1.3;p = 0.007) 和延迟 (4.6 ± 1.4 对 6.3 ± 1.3;p = 0.005) 的噪音水平较低,而他们评定的舒适度 (7.4 ± 1.0 对 6.1 ± 1.7;p = 0.016) 和总体体验 (7.6 ± 1.0 对 6.0 ± 0.9;p = 0.005) 较高。再次接受该序列的意愿也更高,但并不显著(8.1 ± 1.0 对比 7.2 ± 1.3;p = 0.066)。结论:与 7 T 的 C-MPRAGE 相比,使用静音梯度线圈的 Q-MPRAGE 可将声级降低 27 dB,同时具有可接受至良好的图像质量以及更安静、更愉快的受试者体验。关键词:声学、健康志愿者、磁共振成像、神经成像、噪音