摘要 — 本文报道了一种新型差分折叠混频器,该混频器采用多重反馈技术来提高性能。具体而言,我们引入了电容交叉耦合 (CCC) 共栅 (CG) 跨导级,通过提高有效跨导来改善低功耗下的噪声系数 (NF),同时通过抑制二阶谐波失真来提高线性度。通常,CCC 产生的环路增益会增加三阶互调 (IM3) 失真,从而降低输入参考三阶截点 (IIP3)。在这里,我们建议在 CCC CG 跨导器中加入正电容反馈和第二个电容反馈,不仅可以抑制 IM3 失真电流,还可以增加输入晶体管的设计灵活性。此外,正反馈还通过灵活的设计标准改善了输入阻抗匹配、转换增益和 NF。采用 0.13 µ m 工艺制作的原型机,所提出的混频器工作在 900 MHz,在 1 V 电压下功耗为 4 mW。测得的双边带 (DSB) NF 为 8.5 dB,转换增益 (GC) 为 18.4 dB,IIP3 为 + 12.5 dBm。
众所周知,所有铁电材料都是压电材料,因此外部压力会使这些系统的尺寸变形,从而根据其传感能力产生合适的压力传感器。在所有铁电材料中,铅 (Pb) 基铁电材料由于其高灵敏度和耐用性而被发明并用作压力传感器。1 – 7 在过去的几十年里,这些系统已被用作电容器、传感器、执行器和静电设备等。8 – 17 过去,包括我们小组在内的许多作者都报道过在低压和高压范围内适用于压力传感器的铅基材料,其中介电常数、压电系数和电容电抗随压力发生显著变化。 1 – 3,5 – 7,13,18 – 26 然而,压力对介电常数变化的影响并不显著,以至于无法在实际高压传感器装置中实现。另一个缺点是介电常数与压力呈线性关系。为了克服这些缺点,我们一直在寻找具有高灵敏度和线性度的新型陶瓷材料。为了实现这一目标,我们选择了众所周知的 Pb(Zr 0.52 Ti 0.48 )O 3 (PZT) 作为母体基质,并用适当的 Bi 浓度替代。
纳米定位系统对传感器的要求是所有控制系统中最苛刻的。传感器必须结构紧凑、速度快、不受环境变化的影响,并且能够解析原子尺度的位置信息。在许多应用中,例如原子力显微镜 [1,2] 或纳米制造 [3,4],机器或工艺的性能主要取决于位置传感器的性能,因此,传感器优化是首要考虑因素。为了定义位置传感器的性能,必须对感兴趣的特性有严格的定义。目前,准确度、精确度、非线性和分辨率等术语的定义比较宽泛,并且通常因制造商和研究人员的不同而有所不同。由于缺乏通用标准,很难从一组规范中预测特定传感器的性能。此外,规范的形式可能不允许预测闭环性能。本文对位置传感器的线性度、漂移、带宽和分辨率给出了简明的定义。然后量化并限制了每个来源产生的测量误差,以便对传感器进行直接比较。重点介绍了允许预测闭环性能与控制器带宽的关系的规格。
摘要:从目前发展现状来看,无芯片射频识别(RFID)传感器在结构健康监测中的应用存在检测难、效果差、设计功能单一等缺点,限制了该技术的进一步发展。因此,提出一种新型RFID应变传感器,实现小型化无芯片RFID编码标签结构紧凑、功能分离。集成圆盘单极子天线使无线测量成为可能。通过单参数应变仿真分析,确定了6个线性度较好的特征参数。采用时间序列数据增强算法和背景噪声数据增强算法对训练集进行扩充。然后利用BP神经网络进行数据融合,训练误差最终收敛到0.0005。设计了有线与无线对比实验,并通过有线实验对无线实验进行优化。无线测量实验结果表明,结合多参数信息融合技术,所提出的传感器与实际应变的平均误差为6.04%,最小误差为0.25%,应变传感器多参数融合监测方法修正了单参数测量的误差,提高了其准确性和鲁棒性。
摘要 本文介绍并分析了一种专用于 2.4 GHz 无线传感器网络 (WSN) 应用的多模式低噪声放大器 (LNA) 的设计。所提出的无电感器 LNA 采用 28 nm FDSOI CMOS 技术实现,基于共栅极配置,其中嵌入共源级以提高电路的整体跨导。该 LNA 经过专门设计和优化,可解决三种操作模式。重新配置是通过电流调谐以及切换放大晶体管的背栅极来完成的。所提出的实现方式可使品质因数 (FOM) 在不同操作模式下保持恒定。在低功耗模式下,LNA 仅消耗 350 uW。它实现了 16.8 dB 的电压增益 (G v ) 和 6.6 dB 的噪声系数 (NF)。在中等性能模式下,增益和噪声系数分别提高到 19.4 dB 和 5.4 dB,功耗为 0.9 mW。在高性能模式下,增益最大,为 22.9 dB,噪声系数最小,为 3.6 dB,功耗为 2 mW。输入参考三阶截点 (IIP3) 所表示的线性度恒定,接近 -16 dBm。报道的 LNA 仅占用 0.0015 mm 2 。
特性 JESD204B(子类 1)编码串行数字输出 通道速率高达 16 Gbps 总功耗:1300 MSPS 时为 1.00 W SNR:172.3 MHz 时为 65.6 dBFS(1.59 V p-p 模拟输入满量程) SFDR:172.3 MHz 时为 78 dBFS(1.59 V p-p 模拟输入满量程) 噪声密度 −153.9 dBFS/Hz(1.59 V p-p 模拟输入满量程) −155.6 dBFS/Hz(2.04 V p-p 模拟输入满量程) 0.95 V、1.8 V 和 2.5 V 电源操作 无丢失代码 内部 ADC 电压基准 灵活的差分输入电压范围 1.36 V p-p 至2.04 V p-p(典型值 1.59 V p-p) 2 GHz 可用模拟输入全功率带宽 幅度检测位,可实现高效的 AGC 实施 4 个集成数字下变频器 48 位 NCO 可编程抽取率 差分时钟输入 SPI 控制 整数时钟除以 2 和除以 4 灵活的 JESD204B 通道配置 片上抖动可改善小信号线性度
我们的团队开发了一种新型超导双环干涉仪(也称为 bi-SQUID),并获得了专利,这种干涉仪可以产生专门设计用于表现出高度线性响应的磁通量传感器。我们的 bi-SQUID 由基于近中观 Cu 约瑟夫森结的铝双环 bi-SQUID 组成。我们还预计,在更高的临界温度下运行的其他超导材料也是可行的。这种方案为传统的基于隧道结的干涉仪提供了一种替代的制造方法,其中结特性以及因此的磁通量对电压和磁通量对临界电流的器件响应可以通过金属弱连接的几何形状进行大量且轻松的调整。我们的 SQUID 系统已经在其响应的线性度方面表现出了巨大的改进,并且由于我们独特的专利设计,我们预计,如果需要,可以在运行过程中进一步提高 bi-SQUID 器件的性能。因此,如果用来替代目前在多通道超导生物磁系统中使用的传统SQUID,我们开发和测试的双SQUID几何结构有望提供一种设计,该设计可能能够为医疗应用提供下一代高灵敏度和高分辨率的超导磁传感器。
I. 引言 近年来,数字射频 (RF) 发射器 (TX) 越来越受欢迎。在数字域中实现发射功能有许多优势,例如,可以省去模拟模块,如可变增益放大器、失调消除数模转换器 (DAC) 和预驱动器。RF 发射器(无论是模拟还是数字)面临的最大挑战是线性度和效率之间的权衡,这反过来又导致了许多线性化技术的出现。由于芯片温度会随 TX 输出功率而有很大变化,因此必须实时继续线性化;也就是说,如果前台校准技术试图校正高度非线性的输出级,则它们会被证明是不够的。本文介绍了一种新的 TX 线性化方法,可在后台校正静态和动态非线性。校正的有效性允许设计 DAC 以实现具有几乎任意积分非线性 (INL) 的最大效率。以宽带码分多址 (WCDMA) 标准为例,简单、紧凑的架构提供了迄今为止报告的最高效率。该发射器采用 28 纳米标准 CMOS 技术实现,可提供 + 24.1 dBm 的功率,相邻信道功率比 (ACPR) 为 − 35.4 dB,总效率为 50%。
MAROC3A 是一款 64 通道芯片,旨在读取负快速输入电流脉冲,例如由多阳极光电倍增器提供的脉冲。每个通道为大于 1/3 光电子 (50fC) 的信号提供 100% 的触发率,并可测量高达 30 个光电子 (~ 5 pC) 的电荷,线性度为 2%。由于 8 位可变增益前置放大器允许补偿检测器通道之间的不均匀性,因此每个通道的增益可以在 0 到 4 之间调整。慢速整形器与两个采样和保持电容器相结合,可以存储高达 5 pC 的电荷以及基线。同时,由于两条可能的触发路径,可以获得 64 个触发输出:一条由双极或单极快速(15 ns)整形器组成,后跟一个用于光子计数的鉴别器;另一条由双极快速整形器(增益较低)组成,后跟一个用于为较大输入电荷(> 1 pe)提供触发的鉴别器。鉴别器阈值由两个内部 10 位 DAC 设置。数字电荷输出由集成的 8、10 或 12 位 Wilkinson ADC 提供。
超导过渡边缘传感器 (TES) 探测器被广泛用作采用超导薄膜作为温度计的辐射热计或微量热计。[1 ] 由于出色的灵敏度、良好的噪声性能、快速的响应和良好的响应线性度,TES 已经成为检测亚毫米微波、光学和 X 射线信号的流行技术。[2,3] TES 辐射热计的一个主要应用是探测由于引力透镜引起的宇宙微波背景 (CMB) 的 B 模偏振特征。在实际天文探测中,部署 TES 辐射热计的观测地点需要位于高海拔地区,以确保至关重要的干燥环境条件。地球上只有四个地方适合 CMB 观测,它们是南极、智利北部的阿塔卡马沙漠、格陵兰岛和中国西藏的阿里。一些团体已经部署了 CMB 探测望远镜系统,如位于南极的宇宙河外极化背景成像望远镜 (BICEP) [ 4 , 5 ] 和南极望远镜 (SPT) [ 6 , 7 ]、位于智利的阿塔卡马宇宙学望远镜 (ACT) [ 8 , 9 ] 和 POLARBEAR [ 10 ],以及位于南极的 AliCPT [ 11 ]