索邦纳大学(Sorbonne Universite),巴黎脑研究所(ICM),Inserm,CNRS,CNRS,APHP,Hôpitalde la Pitie ́Salpêtrie ̀雷,47 Boulevard del'Hôpital,France Bonn and Bonn Nut and Micro Science and Micro Science and Insipmation 。 Katzenburgweg 7,53115德国B波恩C基因组统计研究所和生物信息学研究所,波恩大学和大学医院波恩,维纳斯伯格校园1,53127 BONN,德国BONN,BONN,BONNY D BONN D BONN,实验性癫痫学研究所 Boulevard de Constance, 77300 Fontainebleau, France f Lyon Neuroscience Research Center, CNRS, INSERM, Claude Bernard University Lyon 1, CH Le Vinatier - Bâtiment 462 - Neurocampus, 95 Bd Pinel, 69500 Bron, France *To whom correspondence should be addressed: Email: hilke.plassmann@insead.edu 1 Shared senior作者身份。 编辑者:Stephen Fleming。 Katzenburgweg 7,53115德国B波恩C基因组统计研究所和生物信息学研究所,波恩大学和大学医院波恩,维纳斯伯格校园1,53127 BONN,德国BONN,BONN,BONNY D BONN D BONN,实验性癫痫学研究所 Boulevard de Constance, 77300 Fontainebleau, France f Lyon Neuroscience Research Center, CNRS, INSERM, Claude Bernard University Lyon 1, CH Le Vinatier - Bâtiment 462 - Neurocampus, 95 Bd Pinel, 69500 Bron, France *To whom correspondence should be addressed: Email: hilke.plassmann@insead.edu 1 Shared senior作者身份。编辑者:Stephen Fleming
Baby,Samoa Vactim支持Layua Modiga Fuices组小组组组小组组。萨摩亚大学Hattie Lowe大学,大学学院Lora,大学学院Leple Lonson div>
使用化学计量学方法评估了未成熟香蕉粉多元素指纹对香蕉基因组和亚基因组进行分类的潜力。使用火焰原子吸收光谱法和比色法测定了属于四个基因组和 11 个亚基因组的 33 个香蕉品种的未成熟香蕉粉中 N、P、K、Mg、Ca、Zn、Cu、Mn、Fe 和 B 的元素浓度。采用主成分分析 (PCA) 结合线性判别分析 (LDA)、支持向量机 (SVM) 和人工神经网络 (ANN) 进行分类,校准和验证集(分别为 157 个和 39 个样本)的比例为 80:20。元素 K、N 和 Mg 的平均浓度最高,分别为 1273 mg/100 g、424 mg/100 g 和 132 mg/100 g。分类模型验证集样本在PCA-LDA、PCA-ANN、PCA-SVM模型中均能成功实现基因组组(准确率100%)和亚基因组组(准确率78.95-100%)的分类,表明多元素指纹识别结合化学计量学是一种有效可行的香蕉基因组及亚基因组组分类方法。
中国樱桃(Prunus pseudocerasus)是中国主要的核果作物之一,具有十分重要的意义。然而,由于缺乏高质量的基因组资源,人工改良其性状和遗传分析具有挑战性,这主要归因于难以解析其四倍体和高度杂合的基因组。在此,我们使用 PacBio HiFi、Oxford Nanopore 和 Hi-C 组装了品种‘诸暨短柄饼’的染色体水平、单倍型解析基因组,包含 993.69 Mb,组装成 32 条假染色体。单倍型内比较分析揭示了广泛的基因组内序列和表达一致性。系统发育和比较基因组分析表明,P. pseudocerasus 是一个稳定的同源四倍体物种,与野生的 P. pusilliflora 密切相关,两者大约在 1834 万年前分化。与其他李属植物类似,樱桃也经历了一次常见的全基因组复制事件,该事件发生在大约 1.3996 亿年前。由于果实硬度低,樱桃不适合长距离运输,从而限制了其在中国的快速发展。在成熟果实阶段,樱桃品种‘诸暨短柄梨’的硬度明显低于樱桃品种‘黑珍珠’。硬度的差异归因于果胶、纤维素和半纤维素含量变化的程度。此外,比较转录组分析发现了两个参与果胶生物合成的基因 GalAK-like 和 Stv1,这可能是造成‘诸暨短柄梨’和‘黑珍珠’果实硬度差异的原因。PpsGalAK-like 和 PpsStv1 的瞬时转化会增加原果胶含量,从而提高果实硬度。我们的研究为中国樱桃功能基因组学研究和重要园艺性状的提升奠定了坚实的基础。
1 斯坦福大学生物系,斯坦福,加利福尼亚州,美国,2 耶鲁大学生态与进化生物学系,纽黑文,康涅狄格州,美国,3 弗吉尼亚理工大学生物科学系,布莱克斯堡,弗吉尼亚州,美国,4 北卡罗来纳大学教堂山分校生物系,北卡罗来纳州教堂山,美国,5 加州大学戴维斯分校进化与生态系,戴维斯,加利福尼亚州,美国,6 班戈大学环境与自然科学学院,班戈,英国,7 凯斯西储大学生物系,克利夫兰,俄亥俄州,美国,8 雪城大学生物系生殖进化中心,纽约州,雪城,美国,9 东京都立大学生物科学系,日本,10 斯坦福大学发育生物学系,斯坦福,加利福尼亚州,美国,11 捷克科学院生物中心昆虫学研究所,Č eske´ Bud ě jovice,捷克共和国,12 于韦斯屈莱大学生物与环境科学系,于韦斯屈莱,芬兰,13 北海道大学生物科学系,札幌,日本,14 夏威夷无脊椎动物项目,林业与野生动物部,檀香山,夏威夷,美国,15 东京大学复杂性科学与工程系,日本东京,16 夏威夷大学太平洋生物科学研究中心,M ā noa,夏威夷,美国,17 儿科遗传医学部;华盛顿大学实验室医学与病理学系,美国华盛顿州西雅图,18 詹姆斯库克大学黛恩树雨林观测站,澳大利亚汤斯维尔,19 贝勒医学院,美国德克萨斯州休斯顿,20 不列颠哥伦比亚大学动物学系,加拿大温哥华,21 加州大学伯克利分校细胞与分子生物学系,美国加利福尼亚州伯克利,22 加州大学伯克利分校霍华德休斯医学研究所,美国加利福尼亚州伯克利,23 爱丁堡大学生态与进化研究所,英国爱丁堡,24 康奈尔大学昆虫学系,美国纽约州伊萨卡,25 内华达大学拉斯维加斯分校生命科学学院,美国内华达州拉斯维加斯,26 北海道大学北海道大学博物馆,日本札幌,27美国密歇根州霍顿市密歇根理工大学生物科学系,28 CZ Biohub 研究员,美国加利福尼亚州旧金山市
摘要 目的 人体普氏菌被认为是类风湿性关节炎 (RA) 的一个促成因素。然而,在一些非西方化国家,健康个体的肠道中也含有大量的 P. copri。本研究调查了 RA 患者来源的 P. copri ( P. copri RA ) 与健康对照者来源的 P. copri ( P. copri HC ) 的致病性。方法 我们从 RA 患者和健康对照者的粪便中获得 13 株 P. copri 菌株。全基因组测序后,对 P. copri RA 和 P. copri HC 的序列进行了比较。为了分析 P. copri 的诱发关节炎能力,我们检查了两种关节炎模型 (1) 在无特定病原体条件下含有 P. copri 的胶原诱导性关节炎模型和 (2) 在 P. copri 单一定植条件下的 SKG 小鼠关节炎模型。最后,为了评估 P. copri 激活先天免疫细胞的能力,我们在体外用 P. copri RA 和 P. copri HC 刺激骨髓来源的树突状细胞 (BMDC)。结果比较基因组分析显示 P. copri RA 和 P. copri HC 之间核心基因内容没有明显差异,但泛基因组分析显示 P. copri 具有较高的基因组可塑性。我们将 P. copri RA 特异性基因组区域鉴定为接合转座子。在两种关节炎模型中,P. copri RA 诱发的关节炎均比 P. copri HC 严重。体外 BMDC 刺激实验显示 P. copri RA 上调 IL-17 和 Th17 相关细胞因子 (IL-6、IL-23)。结论 我们的研究结果揭示了 P. copri 的遗传多样性,以及与 P. copri RA 强效诱发关节炎能力相关的基因组特征。我们的研究有助于阐明 RA 的复杂发病机制。
哪些推荐是transformaɵonal,哪些是重新提示的?什么是可行的?这5个小组可以在接下来的几周内重新讨论他们从这个小组流程中听到的听到的内容,以及其他推荐的人,以将更加重新固定的推荐组组合在一起,为第1阶段的过程在第2阶段中需要解决什么?这也可以在小组中讨论。
全球气候变化对陆地生态系统功能影响巨大,降水模式的波动范围从极端干旱到不适应这些条件的生态系统中的高强度降雨事件。同时,生态系统功能受到生物多样性迅速丧失的威胁(Tilman 等人,2012 年)。气候变化和生物多样性对生态系统功能产生复合影响的可能性凸显了同时考虑这两个因素的必要性。通过更好地了解生物多样性和气候变化对生态系统过程的潜在机制介质,可以更好地预测此类影响。大量研究表明土壤微生物在生态系统功能( Austin 等人, 2014 ; Dubey 等人, 2019 ; Podzikowski 等人, 2024 )和生物多样性维持( Van Der Heijden 等人, 2008 ; Bever 等人, 2015 )中发挥着关键作用,因此很可能成为调节生物多样性和气候变化对生态系统功能的联合影响的候选者。因此,了解土壤微生物组(包括功能不同的微生物群)如何应对气候扰动以及植物多样性和组成的变化至关重要。土壤微生物组已被证明对降水变化高度敏感( Barnard 等人, 2013 ; Engelhardt 等人, 2018 )。研究表明,细菌和真菌(包括真菌病原体(Coulhoun,1973 年;Talley 等人,2002 年;Delavaux 等人,2021 年 a)和丛枝菌根 (AM) 真菌(House and Bever,2018 年)和卵菌(Van West 等人,2003 年;Delavaux 等人,2021 年 a))的丰富度、丰度和组成会随着降水量的变化而变化。虽然细菌和真菌都对降水量的增加作出反应,但研究发现真菌比细菌更能耐受干旱条件(Barnard 等人,2013 年;Engelhardt 等人,2018 年)。同时,一些真菌病原体(例如锈病,Froelich 和 Snow,1986;根腐病 Wyka 等人,2018;Bevacqua 等人,2023)和腐生菌(Delavaux 等人,2021a)被发现在较潮湿的条件下繁殖。此外,陆生卵菌通常是植物病原体,它们在较潮湿的条件下多样性增加(Delavaux 等人,2021a),这可能是它们依赖水的生命周期所预期的(Thines,2018)。因此,这些对降水的不同反应对于微生物组对植物群落的反馈具有重大影响,例如在干旱条件下对 AM 真菌伙伴的依赖增加( Stahl 和 Smith,1984 ; Schultz 等人,2001 ; Auge,2001 ; Marulanda 等人,2003 )以及在潮湿条件下病原体的影响可能更大。因此,确定功能和分类学上不同的土壤微生物群对重大降水变化的相对敏感性,对于理解微生物组驱动的功能如何随着干旱期延长和降雨期加剧而发生变化至关重要。迄今为止,还没有研究测量过微生物功能群对降水实验性改变的广度。土壤微生物组对植物群落组成也高度敏感。植物物种丰富度的提高可以增加微生物多样性(Lamb 等人,2011 年;Burrill 等人,2023 年),因为植物物种的微生物组通常因根系结构(Saleem 等人,2018 年)、根系
有20种不同类型的氨基酸,每个成熟的mRNA均由四种类型的氮基(A,U,G,C)组成。在三组组中,四个氮基碱的组合给出了64个密码子,即相同的氨基酸可以由多个裂纹编码。因此,遗传密码是退化的。
Abdulnasir Hossen教授是人工智能(AI)和信号处理领域的领先专家。自1999年以来,Hossen博士就读于阿曼苏丹Qaboos大学电气和计算机工程系(ECE)。2013年6月,他成为一名完整的教授,目前是同一大学传播和信息研究中心(CIRC)的联合国教科文组织人工智能主席。Hossen教授是IEEE的高级成员。 他是FOSSC2019组组委员会主席,以及2020年2月SQUB举行的远程医学和AI国际远程医学和AI研讨会,以及2022年2月在SQUEN举行的FOSS FOSS FOSS FOSS委员会。。Hossen教授是IEEE的高级成员。他是FOSSC2019组组委员会主席,以及2020年2月SQUB举行的远程医学和AI国际远程医学和AI研讨会,以及2022年2月在SQUEN举行的FOSS FOSS FOSS FOSS委员会。Hossen教授在国际期刊和会议上有大约100个出版物。 他于2000年,2003年,2006年,2009年,2015年和2018年获得了DAAD研究奖学金。 Hossen教授在Omantel的支持下在Squ上建立了一个新的IoT实验室。Hossen教授在国际期刊和会议上有大约100个出版物。他于2000年,2003年,2006年,2009年,2015年和2018年获得了DAAD研究奖学金。Hossen教授在Omantel的支持下在Squ上建立了一个新的IoT实验室。Hossen教授在Omantel的支持下在Squ上建立了一个新的IoT实验室。