摘要:RNA 代谢失调已成为导致肌萎缩侧索硬化症 (ALS) 疾病中运动神经元 (MN) 退化的关键事件之一。事实上,RNA 结合蛋白 (RBP) 或参与 RNA 代谢方面的蛋白质的突变占 ALS 常见形式的大多数。特别是,与 ALS 相关的 RBP FUS 突变对 RNA 相关过程的许多方面的影响已得到广泛研究。FUS 在剪接调控中起着关键作用,其突变严重改变了编码参与神经发生、轴突引导和突触活动的蛋白质的转录本的外显子组成。在本研究中,通过使用体外衍生的人类 MN,我们研究了 P525L FUS 突变对导致环状 RNA (circRNA) 形成的非规范剪接事件的影响。我们观察到 FUS P525L MN 中 circRNA 的水平发生变化,并且突变蛋白优先与下调 circRNA 两侧含有反向 Alu 重复序列的内含子结合。对于一部分 circRNA,FUS P525L 还会影响它们的核/细胞质分配,证实其参与了不同的 RNA 代谢过程。最后,我们评估了细胞质 circRNA 作为 miRNA 海绵的潜力,这可能与 ALS 发病机制有关。
摘要:甲藻是单细胞原生生物,具有不寻常的核特征,例如基因组大、染色体浓缩和以串联基因阵列形式组织的多个基因拷贝。人们认为遗传调控是在翻译水平而非转录水平上控制的。这一过程中的一个重要参与者是起始因子 eIF4E,它与 mRNA 5' 端的 7-甲基鸟苷帽结构 (m7G) 结合。对 11 种甲藻物种的转录组分析表明,每种物种编码 8 到 15 个 eIF4E 家族成员。确定 eIF4E 家族成员在基因表达中的作用需要一种抑制其表达的方法。在其他真核生物中,这可以使用与 RNA 互补链结合的翻译阻断吗啉来实现,从而抑制 mRNA 加工。以前,未经修饰的吗啉缺乏穿过细胞膜的能力,但是肽基试剂已被用于通过内吞介导的过程将物质递送到细胞的细胞质中,而不会损坏细胞膜。我们已成功使用特定的细胞穿透肽将荧光标记的吗啉递送到 Amphidinium carterae 的细胞质中,目标是靶向 eIF4e-1a 序列以抑制翻译。特定的 eIF4e 敲除成功率(高达 42%)已通过显微镜和蛋白质印迹分析进行鉴定。
图1方案说明了EV的研究概念和隔离。 在获得货物生物活性之前,(a)EV被细胞吸收,将其封装在其水泡室(即内体)[I] [I],然后与内体膜融合,以将葡萄球菌释放到细胞质[II]中。 (b)使用纳米脂肪系统对电动汽车的总摄取和膜融合进行定量。 在这项研究中,EV的“细胞摄取”被定义为包括内体[I]中的EV和与内体膜融合的EV [II]。 (c)隔离SEV和LEV。 evs,细胞外囊泡; Sevs,小的细胞外囊泡; LEV,大型细胞外囊泡。1方案说明了EV的研究概念和隔离。在获得货物生物活性之前,(a)EV被细胞吸收,将其封装在其水泡室(即内体)[I] [I],然后与内体膜融合,以将葡萄球菌释放到细胞质[II]中。(b)使用纳米脂肪系统对电动汽车的总摄取和膜融合进行定量。在这项研究中,EV的“细胞摄取”被定义为包括内体[I]中的EV和与内体膜融合的EV [II]。(c)隔离SEV和LEV。evs,细胞外囊泡; Sevs,小的细胞外囊泡; LEV,大型细胞外囊泡。
sirtuins(Sirt)表现出脱乙酰化或ADP-核糖基转移酶活性,并调节细胞核,线粒体和细胞质中的各种细胞过程。尚不清楚唯一驻留在细胞质中的SIRTUIN SIRT2在心力衰竭发展(HF)和心脏肥大中的作用。在本文中,我们表明删除SIRT2(SIRT2 - / - )的小鼠的心脏在缺血 - 重新灌注(I/R)和压力重载(PO)后显示出改善的心脏功能(PO),这表明SIRT2对压力的响应对心脏中的心脏不良效应发挥了不良适应性作用。在具有心肌细胞特异性SIRT2缺失的小鼠中获得了相似的结果。机械研究表明,SIRT2调节核因子的细胞水平和活性(红细胞衍生的2)类似2(NRF2),从而导致抗氧化剂蛋白的表达降低。在sirt2 - / - 鼠标心脏中删除NRF2,在PO之后逆转了保护。最后,用特定的SIRT2抑制剂对小鼠心脏进行处理可减少心脏大小,并减轻对PO的心脏肥大。这些数据表明SIRT2在心脏中具有有害作用,并且在HF和心脏肥大的进展中起作用,这使该蛋白成为SIRT家族的独特成员。此外,我们的研究还通过以药理学为目标,为心脏肥大的治疗提供了一种新颖的方法,为治疗这种疾病提供了一种新颖的途径。
图3。真核细胞原型。(a)用塑料球绘制的塑料球产生的真核细胞的表示;一个孤立的球是一个单个细胞,球体的结合代表形成多细胞生物的细胞的缔合。小块的自粘性胶带粘在球体上,使它们可以自由或分组。(b)封闭的真核细胞原型,用两个盆地用工艺涂料绘制,并由电线边缘固定。(c)开放的真核细胞原型,其中可以观察到细胞质,核和遗传物质。(d)方案表示可以在原型中观察到的细胞结构。
mRNA 在转录过程中在细胞核中合成,产生前 mRNA,然后加工成 mRNA。在转录过程中,遗传信息由 RNA 聚合酶从 DNA 中复制,形成所谓的前 mRNA。然后,该分子通过添加 5' 帽和 3' poly(A) 尾巴进行加工,并通过在细胞核中剪接内含子序列形成五组分成熟 mRNA 结构。mRNA 结构中的每个组分在细胞质中核糖体的运输、翻译和有效生产蛋白质方面都有特定的作用(见图 3)。
阳离子脂质有助于将核酸递送到真核细胞中。它们的基本结构由带正电的头部基团和一条或两条烃链组成。带电的头部基团介导脂质与核酸带负电的磷酸骨架之间的相互作用。据推测,这些相互作用导致核酸-脂质体复合物的形成,该复合物随后可能与靶细胞的质膜接触并通过内吞作用被吸入。或者,核酸-脂质体复合物可能与质膜融合并混合,将核酸沉积到细胞质中。
融合蛋白在大肠杆菌重组蛋白的生产中起着重要作用。它们主要用于细胞质表达,因为它们可以设计为增加目标蛋白的溶解度,然后可以通过亲和层析轻松纯化。相反,融合蛋白通常不包含在用于周质生产的构建体设计中。相反,插入信号序列以将蛋白质转运到周质中,并添加 C 端 his-tag 以进行后续纯化。我们的研究小组提出从欧洲亚硝化单胞菌周质中分离的小金属结合蛋白 (SmbP) 作为一种新的融合蛋白,用于在大肠杆菌的细胞质或周质中表达重组蛋白。SmbP 还允许通过使用 Ni(II) 离子的固定化金属亲和层析进行纯化。最近,我们通过将 SmbP 标记蛋白的天然信号肽与取自果胶酸裂解酶 B (PelB) 的信号肽进行交换,优化了 SmbP 标记蛋白的周质生产,从而大幅增加了蛋白产量。在这项工作中,我们表达并纯化了 PelB-SmbP 标记的可溶性生物活性人类生长激素 (hGH),并获得了迄今为止报道的该蛋白的最高周质产量。在 Nb2-11 细胞上测试的其活性相当于 50 ng mL 1 的商业生长激素。因此,我们强烈建议使用 PelB-SmbP 作为蛋白标签,用于大肠杆菌周质中 hGH 或其他可能的目标蛋白的表达和纯化。
摘要 基因编辑 (GE) 在养猪生产中的应用可以产生广泛的影响,因为它可以增加基因编辑猪在农业和生物医药中的可用性。成簇的规律间隔的短回文重复序列 (CRISPR)/CRISPR 相关蛋白 9 (Cas9) 系统的最新应用有望提高基因编辑的效率。CRISPR/Cas9 系统的细胞质微注射能够在猪受精卵中诱导位点特异性突变。在本研究中,我们检查了通过细胞质微注射将 CRISPR/Cas9 蛋白和分化簇 163 (cd163) 引导 RNA (gRNA) 成分引入受精卵的效率。CRISPR/Cas9 蛋白和 cd163 gRNA 注射组的裂解率 (78.9% 和 85.2%) 与对照组 (90.6%) 在统计学上相似。此外,CRISPR/Cas9 蛋白和 cd163 gRNA 注射组的囊胚形成率(19.9% 和 19.6%)也与对照组(21.5%)具有统计学差异。当对单个囊胚进行基因分型时,我们在后续的囊胚中观察到基因的靶向修饰。在 10 ng/ul 样本中,CRISPR/Cas9 蛋白和 cd163 (10+134) gRNA 各注射组(22.7%)显著高于(p<0.05)CRISPR/Cas9 蛋白和 cd163(10) gRNA 各注射组(12.9%)。在突变囊胚中检测到了各种类型的 indel 突变,包括 4 bp 缺失到 72 bp 插入。这些结果表明,CRISPR/Cas9 技术可用于通过直接受精卵注射生产基因编辑猪。
Na 1-倾斜的NADH-偶像酮(UQ)氧化还原酶(Na 1 -NQR)存在于许多病原细菌的呼吸链中,被认为是有前途的抗生素靶标。虽然已知Na 1 -NQR结构和功能的许多细节,但有效抑制剂的作用机理并不理解。阐明机制不仅可以提高药物设计策略,而且还可能提供有关末端电子从核黄素转移到UQ的见解。为此,我们使用了两个已知的抑制剂Aurachin和korormicin的光反应性衍生物进行了光性标记实验,该衍生物是在分离的弧菌cholerae na 1 -NQR上进行的。标记为NQRB亚基的细胞质表面结构域的抑制作用,其中包括突出的N末端拉伸,这可能是批评在相邻NQRA亚基中调节UQ反应的。标签被短链UQ(例如泛素酮-2。The photolabile group (2-aryl-5-carboxytetrazole (ACT)) of these inhibitors reacts with nucleophilic amino acids, so we tested mutations of nucleophilic residues in the labeled region of NqrB, such as Asp 49 and Asp 52 (to Ala), and observed mod- erate decreases in labeling yields, suggesting that these resi- dues are involved in与行为的互动。我们得出的结论是,抑制剂以两种方式干扰了UQ反应:第一种是阻止NQRA和NQRB之间的细胞质界面处的结构重排,第二个是在该界面区域内的UQ结合的直接阻塞。通常的竞争行为证实了我们先前的主张,即Na 1-NQR中可能存在两个抑制剂结合位点。